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APPROXIMATION THEORY, OR. A MISS Is BETTER THAN A MILE

Whatever else an inaugural lecture is supposed to be - and a variety
of descriptions have been offered here by previous victims of the
system - I take it as an opportunity for a new holder of a prof6ssorial
Chair to talk on something that interests him, preferably related to
his own subject, and in such a way rhat he can be understood, Iargely
at any rate, by his university colleagues, by students of all sorts, and
by lay members of the public wishing to spend a comfortable hour
relaxing in the lecture-room.

Now I profess tO be a mathematician.,, and mathematicians are per-
culiar in having not merely the two modes of self-expression and
communication - prose and poetry - enjoyed by Molibrers Monsieur
Jourdain and by others, but also a third, esoteric, mode - though
as University teachers we do our best to spread the secrets as widely
as we can. If I were to use this third mode - the language of mathe-
matics - today, I fear I would quickly lose, figuratively if not liter-
ally, a part of my audience. Since I do not wish to do this a moment
sooner that I can he1p, I will avoid this mode as much as I canl
though I may occasionally have to use a technical term or two.
Professor Lloyd, who faced the same problem in his inaugural
lecture five years ago, chose to give his audience a wide-ranging
discourse ofi Mathematics in general, from ancient times to the
present. I could not possibly emulate him in such an undertaking
and shall not attempt anything like it. Now in the course of my
mathematical activity I have had the good fortune to be concerned
among other things, with two subjects, namely electric network
theory and approximation theory, which have two important features
in common: they are both closely related to practical problems, and
they have both given rise to a great deal of interesting and varied
mathematics. Since ttris university is, as far as I know, almost if
not quite the only one in this country in which approximation theory
is offered as a distinct undergraduate topic in mathematics, I thinkit
willlbe appropriate for me in this lecture to try to convey something
of the nature and history of an aspect of ttrat subject that particularly
interests me,and I shall incidentally mention an interesting corurection
with network theory. lf occasionally I am led to stray from my pattr
by a beautiful face or other distraction - well, that will be my
prerogative this evening.



According to popular belief, ila miss is as good as a milerr, but
this is more indefensible than most sayings of this kind. Not
only does it distort, for the sake of a couple of anapaests, its
intended meanilg, that I'a miss is no better than a miletrr but thls
thesis itself is highly questionable, and is indeed belied by that
other equally popular saying I'Tis better to have loved and lost than
never to have loved at allr, which is surely far nearer the truth. So

is the Danish proverb which, in translation, (for I dare not inflict my
Danish on you), says "Almost shoots no man off his hotse". Clearly
this is irrefutably true, but it does not tell the whole story - for
the objective might be not to shoot him off but to frighten him off. I
mention this because 'in the problems studied in approximation theory
the bulfs eyeis in general an unattainable objective and the imPortant
thingis to get as near to it as possible in the circumstances.

Before discussing what approximation theory is about, I would like
to say a few words on what it is not. That much of mathematlcs is
concernd with approximations is a farniliar Platttude. In fact
according to Bertrard Russell ilAll exact science is dominated by
the idea of approximationrr. The theoretical ratio of the clrcumference
of any circle to its diameter is, in abstractr a precise univereal
constant. But any concrete arithmetical repre8entatlon of lt, aB a

fraction or decimal, can only be an approximationr and lndeed a great
deal of effort has been devoted for thirty centuries or more to obtain-
ing increasingly accurate representations, for example the value 3

given in the Old Testament, the value 2217 found by the Greeke, and
so on until the present day wheri a computer can deliver a value
correct to thousands of decimal places on demand. However, such
approximations are not the concern of aPProximation theory. Or again
if a problem in applied mathematics, for example involving a vibratlng
membrane, or torsion in a bar, or fluid motion,is to be solved,
this will usually mean solving a differential equation for which no neat
rpackagedt solution in the form of a closed formula exists. Then by
so1*risticated methods solution values can be obtained which are
approximations to the true values. But these methods belong to
numerical analysis, and not,in general, to approximation theory.

tn order to convey what aPProximation theory !g concerned with,
I propose to take you back more t}ran 200 years, to the early days

of the industrial revolution. The scientific renaissance in the l5th
and 17th centuries led, amongother things, to an increase in the
demand for minerals. It was not long before exhaustion of surface

ore deposits necessitated deeper and deeper mining, which gave rise
sooner or later to problems of drainage. Early steam engines were
invented specifically for the purpose of operating pumPs for raising
water - mainly for mine drainage, though also for driving water-
wheels and for domestic purposes.

The first steam engines in general use were those of Newcomen,
dating from 1?12. Newcomen came from Devon, and his engines
frund their first application in the Cornish tin mines. Their fame
spread far and wide, and for sixty yeats they were in use, almost
unchanged, not only all over Britain but throughout Europe.

Their action depended on the creation of a vacuum in a cylinder
by the condensation of steam in.it. However. they were very ineffi-
cient, and tlre first major improvement in their design was tlte
invention of the separate condenser in 1765 by James Watt, then an
obscure mathematicAl-instrument maker practising his trade at
Glasgow University, who some years earlier had been given the task
of repairing a broken-down Newcomen engine. Fig. 1 shows one of
Wattrs "single-acting pumping enginesr'. As to its mode of operation
I will say no. more than that while condensation causes a vacuum in
the cylinder, steam at atmospheric pressure applied above the piston
forces it to ttle bottom, pulling down one end of the beam by means
of an attached chain. and thereby raising the pump-rod attached to
the other end. Valves operated by a third rod attached to ttre beam (the
t'plug-rod") now release the vacuum, and the piston is brought up
once more by the weight of the pump-rod. thus completing one cycle
oi operation.

The next big step indevelopment was ttre conversion of the recipro-
cating action, suitable for prmp operationr into rotative action, needed
for countless purposes in mills and factories. Watt, who in Professor
Frenchrs memorable phrase was an "enginee'ring animal'r of the very
highest order, invented many ingenious devices to that end, resulting
in his double-acting rotative engine of about l?87, shown in Fig, 2,
but the device which concerns us here was his so-called rparall'el
motionr, invented three years earlier.

As we have seen, tlre pumping engine was rbingle-actingr', that is
steam pressure acted on:the piston only during the down strcke,
the return motion being produced by the weight of the pump-rod. To
make the engine double-acting and so more dfficient, it was necessary
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Fig.2 Watt's double-acting
rotative engine, r787-t8oo.

Frcm Frey's S&car Wiu, 1827.

to replace the flexible chain, attaching the piston rod to the beam,
by a iigid connection. However, a direct connection was not practicql,
since the piston and piston-rod needed to move in a straight line, while
every point of the beam moved in a circular arc. Again. the use of
smooth guiding surfaces \^tas ruld out because, as Watt knew. surfaces
of sufficient flatness could not be produced at that time, and in any case
the friction that would be introduced was undesirable.
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Fig. I Watt'3 single-acting pumping engine, 1788-l8oo.

From FertY'r Sleus Engiu, 1a27.



In a letter to his partner, Matthew Boulton. in l?g4 Watt referred to
his ney' idea in the following words: r'I have startd a new hare. I
have got a glimpse of a method of causing a piston rod to move up and
down perpendicularly by only frxing it ro a piece of iron on the beam,
without chains or perpendicular guides or untoward frictions, arch-heads
or other pieces or clumsiness. I think it is I very probable thing to
succeed. and one of the most ingenious simple pieces of mechanism
I have contrived. rl

Wattrs solution was a combination, ingenious indeed, of a 3-bar
jointed linkage (or 4-bar according to oners point of view) and a
pantogreph, and with these not only the piston rod but also, as a
bonus, the plug rod was given an aDproximately linear motion, The
device, which can tret seen below the upper end of the beam in Fig, 2,
is shown diagrammatically in Fig. 3. There, EF is the beam,
pivoted at D, ABCD consritutes the linkage, with A fixed, while
DCEQB forms tle pantogTaDh. with CEQB a jointed parallegram, and
P is that point of BC which is in line with Q and, D. lt is easy to see
that horrever tlte various parts of the pantograDh move, the paths of
P and Q will always be similar, like those of Peter Pan and his shadow,
and in particul,ar if P moves in a straight line, or nearly so, then Q

Fig.3
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does likewise, Now as the beam oscillates to and fro about its pivot
the total path of P is a narrow figure of 8, and Watt showed that if the
various dimensions were such that the ratios BP : PC and DC : AB

were eoual, then the part of the total path corresponding to a beam
oscillation of not more than 20" up or down would be very nearly linear.
In this way h e ensured that oscillatory motion of ttre beam corr€s-
ponded to almost linear motion of the plug rod connected at P and of
the piston rod connected at Q, as desired.

Years later Watt said rrl am more proud of my parallel motion!.
than of any other rnechanical invention I have ever mader'. He would
have been even prouder, I imagine, if he had known that in a Later
epoch and in a distant country his parallel motion would lead to the
invention of a new kind of mathematical thinking, and the foundation
of a neur type of mathematical theory, which would not only mLte vital
contributions to mattrematical analysis, hrt would also play a major
part in numerical analysis, and would have an intimate connection
with computers.

To understand how t[is came about, we must travel to t}re University
of St. Petersburg, where Pafrruty Lvovich Chebyshev was a Professor
of Mathematics from 1847 to 1882, and enjoyed a European reputation
for his work in many fields, including the theory of numbers, theory
of probability, ttreory of integration, interpolation theory and numerical
analysis. Now Chebyshev had from childhood been passionately
interested in mechanisms and mechanical devices, whether for toys or
for msre important purposes, and to the end of his days he spent much
of his time and money on inventing such devices and making working
models. In his later years, for example, he designed and srrpervised
the construction of a calculating machine with several novel features:
it can be seen today in the Conservatoire des Arts et MEtiers in Paris.

l85l was a very important date in the history of 19th century science
and technology, for it was the year of the Great International Exhibition
in London. It was natural that Chebyshev should want to visit it, b'ut in
spite of a memorandum sent to the St. Petersburg authorities on his
behalf by several senior colleagues, who pointed out the likely benefit
to Russian technology, permission was not granted. However, in 1852,
with official blessing, Chebyshev, at the age of 31. undertook an
extraordinary grand tour of Europe, lasting from June to November.
There never was such a tour as this before or since, and a long
report which he submitted aftenrrards tells us in detail of his activities.
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He devoted his afternoons to visiting factories, mills, railways, and
inspecting machines and machinery of all kinds: Dutch windmills at
Lille, *ater. turbines, the hydraulic engines at Marly used for the
foundations et Versailles, iron works and machine factories et
Metz, machines and working models at the Conservatoire in paris
(many just purchased at the Extribition in London), and so on, During
the evenings on the other hand he did mathematical research. which
resulted in at least hrro major papers. or else visited famous mathe-
maticians, including Liouville, Cauchy and Hermite in Paris,
Dirichlet in Berlin, and Sylvester and Cayley in London. (It is
interesting to note, by the way, that he was able to visit the last two on f
Sundays also since in EngLand, unlike France,all factories were.closed I
then!) He was particularly interested in Wattrs parallel motion. which .l
was still much in evidence, not only en engines made by Wattts firm I
(which he specially sought out while in England), but also on several il
later types of beam engine, In fact, this meetranism is still in use il
at t}re present time. for example in the constnrction of indicators, il
in certain t'?es of cranesr in ship-steering apparetus, and even in the il
suspensions of some high-oerformance cars. 

t
It will be apparent that Waftrs device must indeed have had great merit. f
Bu6' it was not perfect: the end of the piston rod did not move precisely I
in a straight line, but only approrimately so. and.although the deviations il
from linearity were very small (for example with a beam about 15 feer il
long, and a Diston stroke of about 4 feet, t}re maximum lateral movement of .[
the piston rod we.s less tlan e tenth of an inch), nevertleless the rezult- il
ing pressures geve rise to frictional resistance which produced a t
certein amount of wear.' Chebyshev, convinced that with the help of t
mathematics he could improve on Wattrs device. by suitably proport I
tioning the dimensions of its components, set to work on this task while q
still on his travels - to such good effect that soon^after his returnhe
was able to read a paper to the Imperial Academy of Sciences at St.
Petersburg,which might well be regardd as the inaugural lecture in
approximetion theory. Like much of Chebyshevrs published work, this
fraper was in French, and it bore the strange title I'ThCorie des
mCcanismes connus sous le nom de paralldlogrammestt l- strange,
that is, not only because one would not expect to find pioneering
mathematics hidden under such a banner;.but also because, apart from
the introductory paragraphs, the paper contained nothing whatever
ebout mechanisms! After 30 pages of mathematics the author promises
to aDply his formulae to the design of rlarallClogrammesrr, i, e. Watt
linkages - tut at that point his paper abruptly stops. In fact, although

Chebyshev remained extr€mely interested in linkages for the rest of
his life, and wrote many papers on them, he never completed this first
paDer.

Since Wattts linkage illustrates ratier vividly the nahrre of the problems
met in spproximation theory, and the principles used in solving them, I
propose to examine it more clearly. Now referring to Fig. 3 it ib
easy to see that once ttre scale of the linkage is determined' by fixing
the position of C on the beam, frve adjushble parameters are available
namely the horizontal and vertical distances of A from D, tre lengths
of the rods AB and BC. and the distance BP.

To obtein his solution Watt had srgud that the moving point P should
lie exactly on the intended vertical line of motion at three points'
namely ttle top, middle and bottom points of the line, He thus prod-
uced a pattr for P of the form shorn solid in Fig. 4 (a), and egain in
Fig. 4 (b\ after being turned through a right angle, for convenience.

Fig.4

(.The dott€d portion of the curve in (a) represents positions of P

unattainable with the limited beam oscillation. The width of the curve
is of course highly exaggeratd.) Now Chebyshev asserted in effect
ttlst with 5 parameters aveilable it must be possible to produce a patl
that coincided with the intended line of motion not merely at 3 points
as in Wattts curve, but at 5. But he went further than this: he stated -

I

l

.b

I



end this was the major contributionof his 1853 paper - that the maxi-
mum deviation flom t}e desired line between the ends of the strokq,
or in other words the worst error, would be minimised if the points
of coincidence were so chosen that the error. actually reached its
maximum value, positively or negatively (that is, onone side of the
line or ttre other) at least 5+l= 6 times, Thus for the least error the
nath should behave something like the curve in Fig. 5. However, this
cardinal property, the like of which had not been formulated in mathe-
matical literature before, was simply put forward.by Chebyshev as a
lsrown fact. He never, either then or later. gave any indication of honr
he arrived at it. He lqrew instinctively that it was correct for the
problem he was studying, and made no attempt to justify it in .this
paper. In fact he generally regardd the finer points of proof es of
less importance than the discovery of practical methods for solving
difficult problems. Whether this paper would have been accepted
for publication in a modern journal I rather doubt: the author would
probably have been told by a referce ro 4void mbkinq unproved
assertions, and anyway to tighten up on rigour generally. In judging
him however we should remember that his Daper was written at white
heat, while he was srill in France on his tour, In any case, he made
handsome amends five years later in his second publication on what he
called rrla rdpresentation 4pproximative des fonctionstr, or approxi-
mation theory as we would now call it. This was a purely theoretical
paper of more than 100 pages, concerned with the general problem of
minimising the maximum error committed over an interval by
representing a given function on the interval by an approximating function
of specified type involving a number of adjustable parameters. He showed
how to calculate. for each particular type of approximating function,the
correct number of points at which the maximum error must be attained
in order to minimise it, and he then proceeded to solve the minimisation
problem completely in particular cases when the approximating

Y
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function is a polynomial, a rational function with a prescribed denom-
inator. or a rational function with free numerator and denominator.
These cases are in increasing order of difficulty, and Chebyshevre
solution for the last case especially was a veriteble tour de force,
for which he made extensive and ingenious use of continued fractions.
The problem was one of both algebra and calculus. but would have
been ouite insoluble by any orthodox approach. lt was not until 1931

that a simpler solution to this problem was found. by another eminent
Russian mathematician. Achieser, using conformel transformations
in a complex plane. I have myself been interested in this Droblem for
many yearsr and succeeded in obtaining e simpler and more elementary
solution (the two adjectives are by no meens slmonymoust ), by a method
which can also be apolied to a 'lumber of other problems.

If we return for a moment to the linlage problem, and imagine hdw
an brthodox mathemstician would have tackled it, we can be tairly
sure tlatr armd with the Taylor expansion formul,a, he would have
eimed to make the enor as small as posslble near ttre middle of the
interval, by arranging for the error curve to havethe highest possible
order of contact there with the desired line (5th order in the case of
Wattrs curve). thus giving en error curve of the form shown in Fig. 6,

Fig.6

which is t'ery good in the central region but gets progressively worse
as one moves out to the ends. In corpparison with this rclassicall
solution one might loosely say that Chebyshevrs curve minimises the
maximum error by, as it were, spreading the error more or less
evenly over the whole interval, The reward is considerable, Jor the
maximum error is thereby reduced by .no less a factor then 2' or 16.
It will be observed incidentally that Wattrs solution is intermddiate
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between t}re two, and in fact Chebyshev claimed an improvement of
onlv about ? or 3 to I over Watt,

It is clear that by the invention of his rparallel motiont Watt can fairly
be considered as the progenitor of approximation theory (q claim I
have never seen made by even the most fanatical of steam]engine
enthusiasts! ) It is interesting therefore that his double-acting engine
(see Fig. 2) contained not just one but two ouite separate devfces each
of which might have gt'/en rise to that claim. For besides his parellel
motion linkage, Wattts engine contained a governor for regt.lating the
sped, and although he had probably seen crude versions of this in
machines operating in Cornwall, his own device was greatly superior
to any of those, Naturally Chebyshev made a note of this too'during
his travels, and in due course - but very much later - he turned his
thoughts to improving on it. The problem is one of dynamical
syntlesis rather than kinematical synthesis as in the case of the
parallel motion. The operation of the governor is in principle very
simple: any change of speed results in a change of centrifugal force
acting on the heavy spheres, which accordingly move outwards Or
inwards and thus by means of a linkage operate a butterfly valve in the
steam pipe which tends to counteract the original change in speed: a
classical example (probably the first) of automatic control by negative
feedback. Now of course the regulation is not perfect (it would be
useless if it were!) and the controlled speed, instead of being constant,
varies slightly with the angles of inclination of the rods. The design
problem is therefore to atrange the geometry of the device in such a
way that for an appreciable range of variation of the angles, the
corresponding speeds differ as little as possible from a constant value.
Chebyshev produced a solution in 18?1. Formally the problem is
similar to the first one: again there are 5 adjustable parameters to be
found, and a curve to be made as flat as possible. But in detail this
problem is much more complicated. He attacked it by first obtaining
tentatively what I have called the rclassical solution and modifying
this, by a process developed in the paper of 1853, so as to get very
near to the optimal solution in which the worst error, or departure
foom flauress, was minimised. However this solution has unfortuna-
tely a fatal flaw in practice, due to the very feature that makes it
optimal, namely the property that the curve must oscillate in the way
seen earlier. The result of this is that the same speed can occur for
five different angles. and in practice this means an unstable system:
for any pa.rticular speed, the governor would not hrow which configura-
tion to take up, and it would exhibit schizophrenia of a very higlrorder.

$

h

Chebyshev had the practical sen6e to recognize this, and to see what
liad to be done. It wiU be noticed that the classical curve does not have
this objectionable property: it is monotonic. that is to say it continually
increases (or decreases), and never takes the same value twice. Thus
Chebyshev set himself the problem of finding the optimal design subject
to the constraiirt that the curve of speed should be monotonic. As far
as I know this was the first example of constrained approximation.
Such problems are always much more difficult to solve. Chebyshev
of course was not defeated by this problem, and produced a most
elegant solution.

I,et us now take stock. As I have already indicated, approximation
theory i s concerned with finding near misses, or nearest possible
misses, in problems where a bulls eye is unattainable. But are there
problems where a bullrs eye can be scored in a non-trivial way?
The answer - which would certainly have suprised Chebyshev in 1860
when he was still engrossed in his work on Wattrs parallel motion -
is yes! And it was another linkage that demonstrated this. In 1864
a French army engineer named Peaucellier, in a brief letter to a
mathematical journal mentioned Wattrs linkage and referred to the
problem of producing exact rather than approximate linear motion by
means of linkages, but he gave no hint that he might have found a
solution. In 1870 a young pupil of Chebyshev named Lipkin submitted a
paper to the Academy of Sciences describing a 7-bar linkage giving
exact linear motion which he had discovered two years before, at the
age of 17, and this paper was published in 18?1. In 1873 Peaucellier
published an identical solution and claimed priority for it, saying^ he
had referred to it in his 1864 letter. This gave rise to an unpleasant
quarrel between Chebyshev on the one hand and the friends of
Peaucellier on tlte other. The verdict seems to have gone in favour
of the latter, for the discovery is now always attributed to higr, while
Lipkin is rarely mentioned. Whatever the truth was, there is no doubt
that the discovery was a sensational event in the world of applied
mechanics, although, with its 7 bars and 6 joints (see Fig.7) it was in
practice less accurate than Chebyshevrs 3-bar linkage, because of the
large number of errors due to production tolerances. An exact straight
-line linkage wittr fewer bars would clearly be preferable, but Chebyshev,
having studied linkages for more than 20 years, expressed the opinion
that no.,such llnkage could exist. But he had no proof of this, and was
relying only on intuition, That he was quite wrong was shown in 18?4
by Hart, an English engineer whose lcrossed parallelogramr straight
-line linkage has only 5 bars - which he proved in fact to be the smal-
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Fig.7

lest possible number. The straight-line properties of both Hartrs
and Peaucelliert linkages depend on the fact that the inverse of a circle
with respect to a point on its circumference is a straight line. and
could easily have been proved by any Sixth-former of those days.
Whether this would still be the case today, nov that Euclid has been
relega.ted to the scrap-heap, I am not sure.

Until the end of the 19th century, work on the theory of approximations
initiated by Chebyshev was confined to some of his shrdents, who. using
the franework established by the master. tackled and solved difficult
problems involving approximation'by polynomials or rational functions.
It is astcnishing however that neither CtrebysheVnor his students ever'
considered the basic question of how accurate the approximation could
become if the number of parameters was increased indefinitely.
Could the maximum error be redrced to as near zero as one wished.
or was there a lower bound below which it could never fall however
many parameters one used.? The question was answered in 1885 in an
epoch-making way by the great German mathematician Weiersrass.
who showed tltat by sufficiently increasing the degree, and hence the
number of coefficients, of a polynomial approximation to a given con-
tinous function, tlrc maximum error over a given interval can be made
as small as desired. This result has had a profound effect on the

t4

theory of functions of a real variable' and is one of the major pillars
of mathematical analYsis.

Weierstrass and Chebyshev were acquainted with each othersr work, and

indeed were linked in a most interesting way - by a brilliant arid

beautiful Russian woman named SophieKovalevsky' tn 1858, at the

age of 18, she tried to gain admittance to the faculty of Mathematics at
St. Petersburg, hrt even though Chebyshev supported her aPP[cation,
the official anti-feminist prejudices nf the time preveildd, and she

was reftrsed.'Thereupon. determined to enter a university, she contracted
an initially nominal marriage with a young lawyer who had become a
science student, and armed with her certificate of respectability,
went to Germany. After a year at Heidelberg, where she attended
the lectures of Kirchhoff and Helmholtz, among others, she moved to
Berlin. There however she was not admitted to lectures, hrt contrived
to become a private student of Weierstrass-at that time tlte most .

eminent analyst in Europ - and four years later returned to Russia as
a doctor of philosophy. After interruptions for high society. the
struggle for the emancipation of women; literary activity and the birth
of a daughter, she resumed her mathematical studies in 1880, and in
1884 was appeinted Professor of Mathematics in Stocltrolm - the first
woman university professor in the world. Incidentally, she enjoys
another interesting distinction. tn E. T. Bells book "Men of
Mathematics"tlere is one and only one reference to Chebyshev, namely
tfi at he had called on Weierstrass when he was out, and had left a me ssage
saying that Sonja (that is, Sophie) had gone social in St. Petersburg.
Such is fame!

The point of this digression is that as a discipi.e of Weierstrass,throughher
frequent contacts with Chebyshev she served to hightght the difference
in approach between the two men, and thus between their respective
matlematical schools. German mathematics was oriented towards
the general theory of functions, without regard to practical utility,
while the Russians, led by Chebyshev, always kept their feet firmly
on the ground, and concentrated on research likely to result in use-
ful applications. In the development of mathematics, there have
always been both kinds of mathematician. sometimes represented in
the same person as for example in the case of Euler, Gauss, and
Poincarei and indeed both kinds are essential for progress. In this
country one might be tempted to refer to them respectively as rrpurerl

and "appliedrr matlematicians. But I have never liked this artificial
distinction, and indeed the epithets are not really applicable to the
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two men in question. Weierstrass was by no means unfamiliar with
the mathematical physics of his day. ln fact his proof of the theorem
on approximation already quoted was achieved through an ingenious
aPplication of an integral occuring in the theory of heat. And when in
1880 Sophie Kovalevsky,after several yearsr separation from
mathematics, appealed to Weierstrass for a problem she could tackle,
he suggested an investigation of the propagation of light in a crystal-
line medium. On the other hand Chebyshev always had an active
interest in subjects so relatively ruselessr (from a practical point of
view) as the theory of numbers and certain problems involving the
integration of irrationals. But in any case Chebyshev, though mainly
interested in practicalapplications, was still not an applied mathe-
matician in the classical British sen6e. Nevertheless. like Weierstrass
he was well informed on problems of applied mathematics, and was
particularly interested in astronomy. Thus when a talented 26 year
old student named Lyapounov asked Chebyshev in 1882 for a problem,
he was given the important but extraordinarily difficult one of deter-
mining the possible equilibrium forms, other than the ellipsoidal
form already known. of a rotating mass of fluid suhject to
Newtonian attraction between its particles, and of investigating the
stability of these forms. Within a year he produced a tlesis contain-
ing a partial solution, whictr, if he had published it, would have
astonished the mathematical world, for two years later Poincar€,
in ignorance of Lyapounovrs work, published a less satisfactory
solution which nevertheless gave him instant fame, election to the
French Academy of Sciences at the early age of 33, and the Gold
Medal of t}te Royal Society. Eventually, Lyapounov, after many
years of contirnrous work on what he always called "Chebyshevrs
problem", completely solved it, and.therewith discovered a method
for the investiga.tion of stability which is of t}le utmost importance at
the present time in the study of all kinds of linear or non-linear systems,
including systems for automatic control.

Mathematics has been called tre Queen of the sciences, but it is
equally their servant, and one of the most facinating features of its
relationship to science and technology is that each can provide an
energising and fertilising stimulus for the other. For example, we
have seen how a simple engineering device serve{, after a lapse
of nearly 70 years, to promote the birth of a new branch of mathe-
matics. In the opposite direction is the patl from Riemannian
geometry, which burst upon the world in 1884, to Einsteinrs general
theory of relativity of 1917. I propose now to mention two more
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examples of this interrelationship, one in each direction, and both
drawn from approximation theory.

About 1887 the great chemist Mendeleev, probably best knowh for his
periodic classification of the chemical elements, was investigating
the way in which the specific gravity s of various kinds of aqueous
solution varied with the percentage concentration p ofthe solute.
Among the solutes he considered were sulphuric acid and ethyl
alcohol. [n each of these cases he gathered data from many reliable
sources, and for each value of p studied he took the mean of tlte
values of s available, which differed from each other by at most a
few parts in ten thousand. From these values of s he calculated the
values of the derivative ds/dp, and on plofting these he found in both
cases that the derivative was approximately a piecewise linear
function of p, that is to say. its graph consisted of a number of
consecutive straight lines with different slopes - which meant that s
was a piecewise quadratic function of p. Moreover, the transition
points between the pieces corresponded closely to various molecular
associations of sulphuric acid or alcohol with water which were
already known or suspeted. A detailed analysis of the figrrres for s

gave sets of quadratic formulae which fitted them extremely well,
but when the corresponding derivatives were plotted, the linear
pieces did not meet at the transition points.

Now in the case of sulphuric acid the discontinuities at these points
were much too large to be explained away by experimental error:
they clearly represented a genuine chemical phenomenon. But in tlle
case of alcotrol (shown in Fig. 8) they were much smaller and'
Mendeleev was too good a scientist to overlook the possibility that
they might be accounted for by small errors (i.e. errors of at most
2 or 3 parts in 10, 000. ) He was thus led to consider the following
mathematical problem: if a quadratic function of p is constrained to
have a prescribed maximum numerical value in a certain range of
values of p. what maximum value may the derivative have?

ln fact Mendeleev solved this problem unaided, and concluded that
the discontinuities in the case of alcohol might indeed have been
produced by experimental errors. But meanwhile his mathematical
colleaue at St. Petersburg. A. A. Markov, had heard of Mendeleevrs
problem. Markov, a former student of Chebyshevrs and himself an
eminent mathematician. known today especially for his work in
probability theory, typically set himself the more general and much
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more difficult problem in which the quadratic was replaced by a

polynomial of degree n; and he solved it brifliantly, thereby starting
a new and important chapter in approximation theory. His main
result was that if a polynomial of degree n is scaled so that its maxi-
mum numerical value does not exceed 1 for values of the variable
between -l and +1 , then the numerical value of the derivative cannot
exceed n2.

My second example concerns the design of electric filter networks,
on which I must first make a few introductory remarks. A filter
netlvork may be simple c complicated, and contain a small or a
large number of components (which may be of several different types),
but we need only note that it has an input a,nd an oufput current or
voltage whose ratio, which we may call the transfer ratio, depends on
the oscillation frequency of the input. The filter design problem is to
put together components of the right t'?es and right values so that the
graph of the transfer ratio when plotted as a function of the frequency,
has a prescribed shape. For example, an ideal low-pass filter tran-
sfer function would have the form shown in Fig. 9.

All input frequencies below the cut-off frequency fo would be passed
through the filter without loss, but for frequencies above fo the output
would be zero. However, a mathematical analysis shows that such a
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filter cannot possibly be constructed - for if it existed it would have
the remarkable property of enabling messages to be received before
they were sent. Thus here we have a cese where the bulils eye cannot
possibly be reached, and the designer must therefore aim for as neara
miss as possible with a prescribed number of components. The art
of filter design dates frcn the early 19201s, and had reached a very
sophisticated and effective stage by 1930 - but ttre idea of designing
for gpqilggl approximation, in the sense of Chebyshev, had not yet
emerged. However, in 1931 the electrical design world was startled
by the appeaance in Berlin of a book, ttsiebschaltungenrr. by Wilhelm
Cauer, in which the complete design of filters with ttre best possible
performance for a given size was described. Formul,ae involving
elliptic functions were profusely displayed , but no proofs were given,
and it is said that for some time after the publication. the best mathe-
matical brains in the Bell Telephone Laboratories in the United States
were assigned the task of finding out howCauer had arrived at his
results. [n fact, Cauer had been a mathematical physicist before
turning electrical engineer, and had become acquinted with Chebyshev
approximation. He saw ttrat this wa6 exactly what was needed for his
design problem: for example, for a low-pass filter, since the ideal
curve could not be attained, one must aim at a curve of the so-called
rrequiripplett type shown in Fig. 10. in which the deviation from the
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ideal curve oscillates in bodt the pass-band and the stop-band in a
similar way to that in Chebyshevrs linkage, However, the problem

fo

Fig. l0 Equiripple filter chorqcleristic
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of achieving this behaviour was a difficult one. and here Cau€r was
helped by a paper of 1877 by ZoLotatev. another of Chebyshevrs students.
Cauer found that by adapting Zolotarevls results, he could solve his
design problem. I may add that it wab through this'work of Cauer that.
as a mathematician engaged many years ago in electric network design
I first became acquainted with and fascinated by the whole subject of
approximation theory.

In this last example I have leapt from the ltth century well into the
20th. Let me go back however to 1899. This was an important year
in the history of the subject, for it marked the simultaneous plb[cation
in bottr Russian and French of Volume I of Chebyshevrs collected works,
the first fruit of whidr was the lnclusion ,in a text-book on real-variable
theory in 1905 by the famous Frenctr mathematician Emile Borel, of a
simple yet completely rigorous treatment of Chebyshevrs method.
Chebyshev had left two important questions unanswered: whether, in
a given problem, there really was a @gg aPProximation (one that could
not be improved upon ) and, if so, whether there were several
equally gooil best ap:proximations; ln other words the questions of
existence and uniqueness of best approximation. That.it is not merely
pedantic to bother with the existence question is shown by the fact
that for some types of approximating irnction. and in certain cases,
there may not be a best approximation. Borel used what I might call
Weierstrassian analysis to solve the existence problem. But hie
main contribution was to emphasise the importance of the error
osc,illation property, according to which tlle error must not only attain
its maximum value a sufficient number of times (as 'indicated' by
Chebyshev), but must take positive and negative values alternately
in doing so. Chebyshev was certaialy aware of this propertyr but
unaccountably he never mentioned or used it. In Borelrs hands it
became the key to a full understanding of the situation, and he showed
that it completely characterised the optimum error in the case of
approximation by polynomials. The uniqueness of best approximation
is then a simple consequence of this alternation property.

Borel may be said to have wedded the ideas of Chebyshev and
Weierstrass, and it was this union that produced the approximation
theory of today. His book was widely read and very influential, and
was undoubtedly responsible firthe spread of the zubJet in Western
Europe and beyond, thongh it was nearly 40 years before it took
root on this side of the Channel-but that is anodrer storyl
In the hard s of mathematicians of Europe and the United States the
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subject developed rapidly, andgreatnames like Bernstein, Dunham
Jackson, Polya, Walsh, Achieser and many more graced the pa.ges
of papers devoted to an ever increasing number of its branches]
Moreover, with the appearance of functional analysis in the world
of mathematics, from about 1920, approximation thecrists received
a powerful new tool which at tre same dme opened ever wider fields
for their activities.

Nearly all this work was theoretical. It is true, some Russian
mathematicians, especially Remez, concentrated on the practical
aspect, that is to say, the approximate representation of given
functions by polyn0rninals or other standard,types of function , as
efficiently as possible. Remez in 1935 developed algorithms,
guaranteed to lead to the best possible solution, but unfortunately
the amount of computational work involved was so great as to dis-
courage the use of his method.

The situation changed dramatically after thewar, with the rise of the
digital computer. The calculations became practicable, and the
algorithms once more worthy of study and development. But now a
most interesting new phenomenon appeared, for it was seen that not
only did approximation theory need the computer - but the computer
needed approximation theory! To understand this, we should
recall that when a mathematician solves problems numerically, he
must have available a wide range of mathematical tables, giving values
oi frrnctions of many kinds: trigonometric functions, exponentiai
functions, Bessel firnctions" and so on, which are liable to be needed
at any stage of the calculation. If a computer is to solve these
problems, it too needs to be able to call on the values of such functions
- and moreover to have them available to a very high degree of
accuracy, for otherwise the numerical capabilities of the computer
will be wasted. Now the obvious procedure would be to prt all the
values ttrat might be required into the computerrs store. But alis
if this were done there would be no room for anything else - and any-
way, computer storage space is a very expensive c(mmodity. The
alternative is to give the computer the means - i.e. a programme _

for calculating any function that may be needed, and it is here that
approximation theory makes its contribution, for it provides the most
efficient possible programmes for the calculations, for which all
that need to be stored are the values of a small number of parameters,
for example the coefficients of a polynomial approximation. Using
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these, the cornputer can calculete the value of the corresponding
function for any value of the variable, and this moreover to an accu&
racy guaranteed in advance.

Thus there has developed a sort of symbiotic relationship between
approximation theory and computers which has lasted for about
20 years and has undoubtedly contributed greatly tb the explosive
growth of the subject since the War, As P. J. Davis has said,
writing of the impact of computers: "The computer research effort
has been a great spur to the theoretical aspects of approximation
theory. In blunt language, an awful lot of money has been spent on
approximation theory in the name of computationr.rr To which I can
only add ttamenlrr.

ln Chebyshevrs first paper on the subject he introduced a special
polynomial - the best approximation to zero, in an interval, among'
all polynomials with fixed leading term, and this polynomial, which
now bears his name, is an indispensable tool in much of numerical
analysis as well as in approximation theory itself. So important has
it become that some years ago an international committee was set up
to decide on a standard spelling of the name Chebyshev from 9 different
forms then in use! These polynomials have been powerfuIly used, in
particular fa the numerical solution of differential equations, and it is
appropriate for me to mention that one of the foremost workers in
this field has been my colleagre at Lancaster, Professor C.W.Clenshaw.

In this account of approximation theory I have, I realise, allowed my
enthusiasm for Chebyshev approximation to obscure the fact tlat there
are other forms of best approximation, in which the root-mean-square
or some other average value of error is minimised, rather thanthe
worst error. However, there is no doubt in my mind ttrat Chebyshev
approximation is the rbest of the bestr, and I make no apology for having
concentrated on it.

This subject which, as I have tried to show, has inspired and been
inspired by technology, science, pure mathematical analysis, numerical
analysis, and the most abstract flights into function spaces, has clearly
earned itself a permanent place not only in matlematics, but also in
tlte university mathematics curriculum, and I am confident that
Lancasterrs example in this respect will be followed by many other
university departments of mathematics.


