
V.L. GoncharovThe Theory of Best Approximation of Functions1. Approximating formul� by PonceletThe history of mathematics testi�es to the fact that the main idea of a theory often is more or lessclearly formulated, though sometimes only in passing, by the predecessors of the mathematician whose namelater becomes inseparably associated with it.The authenticity of the approximation method due to Chebyshev can be thought of as well established.This makes it all the more interesting to investigate the source of the impetus that led our genius fellowcountryman to his brilliant and deep constructions.There is nothing mysterious about it. Chebyshev himself tells us, in a perfectly clear way, about thepurpose of his research in approximation theory, and names the person whose results were his starting point.He states: \From among the many research subjects that I encountered in studying and comparing di�erentmechanisms of motion transfer, especially in a steam engine, where e�ciency and reliability depend muchon the way the power of steam is transferred, I was especially occupied by the theory of mechanisms knownas parallelograms... While trying to derive the rules for constructing speci�c parallelograms directly fromtheir properties, I encountered problems in analysis that were not well known then. Everything done in thisarea is due to Mr. Poncelet, a member of the Paris Academy who is well known in applied mechanics. Hisformul� are widely used in computing the friction y in mechanisms..." [6]. And in a di�erent place [1]: \Withrespect to the approximation method just mentioned, we are only equipped with the �ndings of Poncelet,who gave linear formul� often used for approximating the following three expressions:px2 + y2; px2 � y2; px2 + y2 + z2:::"It is not the applications of Chebyshev's theory that are of interest to us at the moment, but ratherits genesis. The results of Poncelet just mentioned are stated (other than in lithographic lecture notes notavailable to us) in his work on approximate radical values published in Crelle's Journal in 1835 [64]. Theresults are not likely to be known to our reader, and it therefore seems appropriate to give a feeling for themhere by presenting the following simplest example.In trying to simplify the computation of the e�ciency of certain mechanisms (as reported by R�esal),Poncelet (who, at the time, was serving as a captain and teaching in the School of Engineering and Artilleryin Metz) poses the problem of �nding an approximating formula for pa2 + b2 of the formpa2 + b2 � �a+ �bin such a way that the absolute value of the relative error�a+ �bpa2 + b2 � 1;which obviously depends only on the ratio ab , have the smallest possible maximum over all values of a andb satisfying ab � k (where k is a positive given number). In other words, using modern notation, one mustchoose � and � so that the expression maxx�k jr(x)j;where r(x) = �x+ �px2 + 1 � 1;y lit.: useless resistance 1



attains its minimum. The function r(x) is increasing for x < �� , and is decreasing for x > �� . Therefore themaximum, which we will denote by F (�; �), is equal to the largest of the three numbers jr(k)j, jr(�� )j, andjr(1)j. Let k = ctg !;�k + �pk2 + 1 = � cos ! + � sin! = �0;��+ �kpk2 + 1 = �� sin! + � cos ! = �0:It then turns out that the values of the continuous function F (�; �) on the domains(A) �2 > 4(1� �); �02 > 4(1� �0);(B) �2 < 4(1� �); �0 > �;(C) �02 < 4(1� �0); �0 < �;are equal, respectively, tor���� =p�2 + �2 � 1; �r(1) = 1� �; �r(k) = 1� �0:The latter quantities, as is obvious from geometric considerations,* are minimized at the point commonto the boundaries of the three domains, namely at� = cos !2cos2 !4 = 21 +q2(k2 + 1)� 2kpk2 + 1 ;� = sin !2cos2 !4 = 2(pk2 + 1� 1)1 +q2(k2 + 1)� 2kpk2 + 1 : (1)The relative error " is the value of F (�; �) at this point," = 1� � = 1� �0 =p�2 + �2 � 1;given by the formula " = tg2(!4 ) = q2(k2 + 1)� 2kpk2 + 1� 1q2(k2 + 1)� 2kpk2 + 1 + 1 : (2)* Let us view the parameters � and � as the Cartesian coordinates in a plane. Then the whole planeO�� is divided into three domains, by the line � = �0, by the parabola �2 = 4(1��), and by the congruentparabola obtained by rotating the �rst one about the focus O by the angle !. In the domain (A), which isoutside of both parabolas, the function F (�; �) is equal to p�2 + �2� 1, and it attains its smallest value atthe boundary point P closest to the origin. In the domain (B), which is inside of the �rst parabola and tothe same side from the line � = �0 as the semi-axis �0, the function F (�; �) is equal to 1��, and, therefore,attains its maximum, again, at the point P . The same is true for the domain (C). It is worth noting thatthe analytic expressions de�ning the function F (�; �) in the di�erent domains are such that in each case theminimum is attained on the boundary, at the point common to the three domains.2



Poncelet presents the following table:a and b k � � "arbitrary 0 0.82840 0.82240 0.17160 or 16a > b 1 0.96046 0.39783 0.03954 or 125a > 2b 2 0.98592 0.23270 0.10408 or 171a > 3b 3 0.99350 0.16123 0.00650 or 1154a > 4b 4 0.99625 0.12260 0.00375 or 1266a > 5b 5 0.99757 0.09878 0.00243 or 1417a > 6b 6 0.99826 0.08261 0.00174 or 1589a > 7b 7 0.99875 0.07098 0.00125 or 1800a > 8b 8 0.99905 0.06220 0.00095 or 11049a > 9b 9 0.99930 0.05535 0.00070 or 11428a > 10b 10 0.99935 0.04984 0.00065 or 11538Poncelet solves the same problem for pa2 � b2 by a similar method, where he introduces the restrictionk � ab � k0. As concerns the square root of the sum of three squares pa2 + b2 + c2, he reduces the problemto the �rst one as followspa2 + b2 + c2 =qa2 + (pb2 + c2)2 � �a+ �pb2 + c2 �� �a+ �(�0b+ �0c) = �a+ �0�b + ��0c:Note that, apart from the work of several French authors ([50], [65]), a more detailed solution of thelast problem under the restriction of the form k � ab � k0 was obtained much later, in the spirit of Poncelet,by A.A. Markov [59].The following quote from Poncelet's work is interesting in two ways. First, it tells us that Ponceletis following even earlier authors in posing the problem. Second, in somewhat vague and cautious terms, itsuggests possible generalizations, and outlines the path followed later by Chebyshev. In connection with the�rst of the problems considered, Poncelet says the following:\The method that allowed us to obtain the general expressions for �, �, and � in terms of k and !, can,obviously, be applied to any function of two variables a and b, more or less complex, given that the goal isto approximate it by a linear expression of the form �a+ �b+ 
, provided that the formula for the relativeerror that results from this substitution takes on its maximum or minimum in the range of values of a andb that are being considered. In some cases, the method might also be applied to functions of any number ofvariables a, b, c, d, etc., if one starts with arguments analogous to those by Laplace and Fourier that allowedthem to determine the values of the unknown variables from a system of equations so that the absolutevalue of the maximum error resulting from substituting experimental data for the unknowns is minimized.*Indeed, the whole di�culty is to �nd, in each particular case, analytic expressions for the extrema of thepossible error; to equate their absolute values; and it then becomes possible (provided that the number ofequations thus obtained is equal to the number of unknowns) to calculate the values of the variables thatsatisfy the required conditions."And further:\These remarks show quite clearly that the method can be applied under very general circumstances.It allows one to replace (provided that the replacement is possible at all) any complex function of anynumber of variables by another function that is simpler and more suitable for computations or analyticaltransformations. The example we have considered gives one a feeling for the machinery that should beapplied in each particular case, as well as for the advantages of our procedure compared to the traditionalmethods { decomposing in a series or in a continued fraction".Even though the problems considered by Poncelet are modest, it can be seen from his words thatthis distinguished researcher had the foresight to appreciate the scienti�c and practical importance of hisprinciple. Choose the parameter values in such a way that the maximum of the error is minimized.* Poncelet cites \M�ecanique celeste" by Laplace, Ed. 2, t. 2, page 126, and \Analyse des �equations" byFourier, part 1, page 81. 3



2. The memoir \Th�eorie des m�ecanismes connus sous le nom de parall�elogrammes"The �rst of the two majormemoirs that contain Chebyshev's research on the best approximation of func-tions was presented to the Academy of Sciences in January 1853. This is soon after Chebyshev had returnedfrom a long trip abroad, where he visited the most important European scienti�c and industrial centers, andwhere he paid equal attention to studying factories, plants, and di�erent kinds of \interesting subjects inapplied mechanics", as well as making personal contacts and \conversing" with famous \geometers", mainlyFrench ones.The name of Poncelet is not among those mentioned by Chebyshev in his report but, undoubtedly,during his stay in Paris or in Metz, Chebyshev was in touch with the circle of his ideas. It is di�cult todecide whether he had considered problems of that kind before his trip abroad. In any case, it is signi�cantthat all his manuscripts written in the preceding period were devoted to pure mathematics (number theory,integration, probability), while, after this trip, Chebyshev showed a lively interest in practical applications ofmathematical problems. In particular, if the actual words of the author are to be taken literally, Chebyshevhad undertaken his research to advance Watt's parallelogram theory. Though it is mentioned that theapplications of the general formula that were obtained \are not limited to investigating these mechanisms",and that \applied mechanics and other applied sciences have a whole range of questions for which theseformul� are necessary". Hence appeared a treatise entitled \The theory of mechanisms known by the nameof parallelograms", which was published in the \Notes of the Academy of Sciences" in French.Chebyshev writes: \Because of the lack of time and the breadth of the subject, I was only able to�nish the �rst part of my note." The structure of this part is roughly the following. After an extensiveintroduction of an exclusively technical nature, which illustrated the drawbacks (inaccuracy of motion) ofWatt's mechanisms, Chebyshev `ex abrupto' turns to solving a purely mathematical problem, which we aregoing to consider now, and only his closing words bring us back to the problem that he initially claimed tobe concerned with: \In the following paragraphs, we shall illustrate the application of the derived formul�for �nding the parameters of the parallelograms that satisfy the conditions that make the precision ofmotion best possible". Where are those following paragraphs? There is no sign of them. Apparently, theinitial plan was not implemented, and the incompatible pieces broke apart. There further appeared, on onehand, the excellent self-contained memoir \Sur les questions des minima", which contains the basics of themathematical theory of approximation and makes \Theory of mechanisms" look like a mere draft, and, onthe other hand, a number of later articles and notes on hinged mechanisms, which were of so much interestto Chebyshev in the second half of his scienti�c activity.*When analyzing the content of the memoir [1], one notices that, even in its purely mathematical part,this treatise is somewhat unbalanced. In passing, Chebyshev establishes here a series of mathematical facts,and states results of major importance, which are undoubtedly fundamental to his theory and contain thesource of its further development. Explicitly, however, the subject of the paper is a rather technical questionof limited importance, though di�cult to solve, requiring cumbersome computations and a great deal ofmathematical insight. The author himself says that this question is motivated by applications, but does notgo into details. Common sense and caution make one act in this way when the authenticity of the resultsobtained is in doubt, or when the results themselves are at risk of not being appreciated by biased arbiters.By the way, the memoir [1] is apparently the �rst to contain a formulation of the general problem. Givena continuous function f , �nd a polynomial of a given degree such that \the maximum of its deviation fromf(x) in a given interval is smaller than that of all other polynomials of the same degree" [1]. In other words,given an interval [a; b], one has to �nd the coe�cients pi of the n-th degree polynomialP (x) = p0xn + p1xn�1 + � � �+ pnso that the expression maxa�x�b jf(x)� P (x)j;which depends on the coe�cients pi, is minimized.* Of interest is an introductory paragraph to the note \On one mechanism" [7] that testi�es that theoryand practice were inseparable in Chebyshev's work in his last years.4



How to �nd the approximating polynomial P (x)? The di�erenceR(x) = f(x) � P (x);\as is known" (according to Chebyshev), necessarily has the following property: \the set of its numerical*maxima and minima in the given interval contains the same number at least n+ 2 times". In other words,if jR(x)j � L for a � x � b, and there exist points x in which jR(x)j = L (the \deviation points"), then thenumber of such points is at least n+ 2 (the latter number is one more than the number of parameters pi).Neither here nor in any other place does Chebyshev discuss the existence or the uniqueness of the polynomialP (x), because in all particular cases he is able to �nd the unique solution. Similarly, there is no statementmade about the number of points of positive deviation R(x) = +L versus the number of points of negativedeviation R(x) = �L, nor about their relative positioning.Chebyshev does not give a proof of his statement, so there remains the question of whether the propertymentioned was formulated by someone else (in France, in Poncelet' school, perhaps, during a conversation)or was established by Chebyshev himself, and, due to its apparent simplicity, was considered as not deservinga proof. The words \is known" can be understood either way.In addition, while tacitly assuming that the function f(x) is di�erentiable, Chebyshev takes up theproblem of �nding the polynomial P (x). At the points of deviation xi, besides the conditionsR2(xi) = L2;the equality (xi � a)(xi � b)R0(xi) = 0holds, and therefore there are at least 2n + 4 equations, from which, theoretically speaking, the points ofdeviation xi, the coe�cients pi, and, �nally, the deviation L itself can be determined. If the system leadsto several polynomials rather than to a single one, then Chebyshev, according to his way of thinking, wouldselect the correct polynomial by direct comparison.Actually, the particular cases considered are such that either solving the system of algebraic equationscan be avoided, or, at least, its order can be reduced. For simplicity, set a = �1 and b = +1. In thisparticular memoir, we are concerned, in fact, with only the one particular case, wheref(x) = xn+p (p is an integer � 1):It follows on algebraic grounds that, in this case, the fractionR2(x) � L2R02(x)can be reduced to (x2 � 1)A(x)B2(x) ;where A(x) and B(x) are polynomials of degree 2(p � 1) and p � 1, respectively. In this way, Chebyshevarrives at the di�erential equation dRpR2 � L2 = B(x) dxp(x2 � 1)A(x) : (3)If p = 1, then A(x) and B(x) are constants, so integrating the equation, using the initial conditions, andcomparing the leading coe�cients gives the resultR(x) = 12nTn+1(x);* that is, absolute values of 5



where Tn(x) = 12[(x+px2 � 1)n + (x�px2 � 1)n] = cosn arccos x:� (4)So, the sought-for polynomial has the formP (x) = xn+1 � 12nTn+1(x):Simultaneously, the following problem is solved. Find a polynomial of degree n with a given coe�cient �0of xn that deviates least from zero on the interval [�1;+1].This polynomial is �02n�1Tn(x):The case p = 2 is essentially the same, becauseR(x) = 12n+1Tn+2(x):As far as the case p � 3 is concerned, without solving the problem completely, Chebyshev points to a wayof doing so, while ingeniously using the results of his 1847 dissertation pro venia legendi \On integration bymeans of logarithms" [14]. While deriving from (3) that the integralZ B(x) dxp(x2 � 1)A(x)can be represented in the form 12 ln R(x) +pR2(x) � L2R(x)�pR2(x) � L2 ;he concludes that the polynomialA(x) must satisfy p� 1 conditions. The same number of conditions comesfrom the fact that the polynomialR(x) does not contain the powers xn+1; : : : ; xn+p�1. All these conditions,are, theoretically speaking, su�cient for computing R(x).The above-mentioned results are undoubtedly of major importance, however they look somewhat likea by-product in the memoir [1]. Let us now turn to the problem that Chebyshev describes as its majorsubject.**Let us assume, as does Chebyshev, that the given function f(x) is analytic at the point x = a, that is,it can be represented by its Taylor series f(x) = 1X0 km(x� a)min some neighborhood of that point. Let p(x; h) be a polynomial of degree n that approximates f(x) best inthe sense of Chebyshev on the interval a� h � x � a+h. Given the coe�cients km, one has to �nd a powerseries expansion of the polynomial p(x; h) in powers of h.If we set F (x) � f(a + x) = 1X0 kmxm; P (x; h) = p(a + hx; h);then the problem can be reformulated in the following way. Given the coe�cients km, �nd the expansionof the polynomial P (x; h) in powers of h that provides a best approximation to the function F (hx) �P10 kmhmxm on the �xed interval �1 � x � +1.* Note that the trigonometric form of the polynomial that deviates least from zero can be encounteredin Chebyshev's 1873 work. The notation Tn(x) was �rst used by S.N. Bernstein in his dissertation.** The exposition in the following paragraph is somewhat modernized.6



We cannot �nd in [1] a proof of the fact that the polynomial P (x; h), as well as the smallest deviationL(x), are analytic functions of h (at h = 0). As a matter of fact, Chebyshev does not need it, since explicitly,and from the viewpoint of possible applications, he is only interested in �nding an approximating polynomialPN (x; h) of degree n with respect to x and of degree N with respect to h such that, as h! 0,P (x; h) = PN (x; h) + O(hN+1):The question of convergence of PN (x; h) to P (x; h) as N !1 is ignored.Chebyshev solves the problem posed in several steps.1. Let N = n. Denote by S(x) the partial Taylor sum of the function F (x),S(x) = nX0 kmxm:Then maxjxj�1 jS(hx)� F (hx)j = O(hn+1);and, therefore, by the de�nition of the polynomial P (x; h), similarly,maxjxj�1 jP (x; h)� F (hx)j = O(hn+1):Thus, maxjxj�1 jP (x; h)� S(hx)j = O(hn+1);which implies that P (x; h) � S(hx).2. Let kn+1 = kn+2 = � � � = kn+p�1 = 0, but kn+p 6= 0. Assume that N = n+ p. Then the polynomialP (x; h) must have the form P (x; h) = S(hx) +O(hn+p);or P (x; h) = S(hx) + hn+pQ(x; h);where Q(x; h) is a polynomial of degree n with respect to x, and we shall assumeQ(x; h) = Q0(x) + hQ1(x) + � � �+ h�Q�(x) +O(h�+1); (� = 0; 1; 2; : : :):By the de�nition of P (x; h), the polynomial Q(x; h) should be selected in such a way that the expressionmaxjxj�1 jF (hx)� P (x; h)j = maxjxj�1 j 1Xm=n+p kmhmxm � hn+pQ(x; h)j == hn+pmaxjxj�1 jkn+pxn+p � Q0(x) + O(h)jbe minimized. This is achieved by minimizing the expressionmaxjxj�1 jkn+pxn+p � Q0(x)j:Therefore, the polynomialQ0(x) of degree n deviates least from the function kn+pxn+p, so it is kn+p times thepolynomial of degree n that deviates least from xn+p, whose construction was discussed earlier. Chebyshevpoints out that the case p = 1 \is the only one that makes sense in the parallelogram theory", and in thiscase, as we have seen, the solution can be obtained via the trigonometric polynomialQ0 = kn+1fxn+1 � 12nTn+1(x)g7



found by Chebyshev.3. While assuming that kn+1 6= 0 for the rest of the argument, Chebyshev computes the polynomialQ1(x) in the following way. By a property of P (x; h), the polynomialQ1(x; h) = Q(x; h)� Q0(x)h = Q1(x) + hQ2(x) + � � �of degree n with respect to x minimizes the expression1hn+1 maxjxj�1 jF (hx)� P (x; h)j = maxjxj�1 jkn+2hxn+2 + kn+1Tn+1(x)2n � hQ1(x; h) + O(h2)j;and, therefore, the equationsfkn+1Tn+1(x)2n + kn+2hxn+2 � hQ1(x; h) +O(h2)g2 = L2(h)and (x2 � 1) ddxfkn+1Tn+1(x)2n + kn+2hxn+2 � hQ1(x; h) + O(h2)g = 0have at least n+ 2 common roots. The �rst of these equations can be written ask2n+1T 2n+1(x)22n + 2hkn+1Tn+1(x)2n [kn+2xn+2 � Q1(x)]� L2(h) +O(h2) = 0: (5)As far as the second one is concerned, its roots are within O(h) of those of (x2 � 1)T 0n+1(x), so they havethe form xm(h) = xm +O(h); where xm = cos m�n+ 1 (m = 0; 1; : : : ; n+ 1):Note that L(h) = L(0) + hL0(0) +O(h2) = jkn+1j2n + kL0(0) + O(h2)and Tn+1(xm(h)) = Tn+1(xm + O(h)) = Tn+1(xm) +O(h)T 0n+1(xm) + O(h2) = (�1)m +O(h2):Set x = xm(h) in (5):2hkn+1 (�1)m2n [kn+2xn+2m � Q1(xm)]� h jkn+1j2n�1 L0(0) + O(h2) = 0:Since this is an identity with respect to h, the coe�cient of h has to be zero, i.e.,kn+2xn+2m � Q1(xm) = (�1)m�; (� = L0(0) signkn+1);or kn+2xn+2m � Q1(xm)� �Tn+1(xm) = 0:Therefore, the polynomial kn+2xn+2 �Q1(x) � �Tn+1(x)of degree n+2 has the same roots as (x2� 1)T 0n+1(x), which means that one polynomial is a multiple of theother: kn+2xn+2 � Q1(x)� �Tn+1(x) = �(x2 � 1)T 0n+1(x);so Q1(x) = kn+2xn+2 � �Tn+1(x) � �(x2 � 1)T 0n+1(x):8



But the polynomial Q1(x) has degree n, so the coe�cients of xn+1 and xn+2 have to be zero. This impliesthat � = 0, � = kn+2(n+1)2n , thereforeQ1(x) = kn+2�xn+2 � 1(n+ 1)2n (x2 � 1)Tn+1(x)	:4. Chebyshev continues to carry out the same kind of computation, turning it into a recursive argument,and �nding next Q2(x), Q3(x), etc. Given the functions Qm(x), one can determine Q(x; h), P (x; h), and�nally p(x; h) and L(h).Without getting into the details, let us illustrate the result of the example considered by Chebyshev forthe case n = 4, k5 6= 0.p(x; h) =�k0 + 116k6h6 + 7k25k8 + 2k5k6k7 � k3664k25 h8 + � � �	+ �k1 � 516k5h4 � 31k5k7 � 3k2664k5 h6 + � � �	(x� a)+ �k2 � 1316k6h4 � 87k25k8 + 10k5k6k7 � 5k3664k25 h6 + � � �	(x� a)2+ �k3 + 54k5h2 + 22k5k7 � k2616k5 h4 + � � �	(x� a)3+ �k4 + 74k6h2 + 36k25k8 + 2k5k6k7 � k3616k25 h4 + � � �	(x� a)4:In this formula, the quantities that contain positive powers of h constitute \the changes that have tobe made in the approximate quantity f(x), given by its expansion into ascending powers of (x� a), in orderto achieve the smallest possible deviation between x = a � h and x = a+ h, for h being quite small".3. The memoir \Sur les question des minima qui se rattachent�a la repr�esentation approximative des fonctions"For several years, Chebyshev's ideas matured and, in 1857, instead of continuing the memoir [1], hepresents a new memoir to the Academy of Science, which is composed in a purely theoretic manner, andwhich contains a complete exposition of the method of best approximation. It is entitled \Sur les questiondes minima qui se rattachent �a la repr�esentation approximative des fonctions" [4]. We �nd here: (1) ageneral theory leading to \Chebyshev's necessary conditions"; (2) an application of the theory to three basicproblems (`cases'), which are further solved completely.The question is generalized in the following way. A function F (x; p1; p2; : : : ; pn), which depends on avariable x and parameters p1; p2; : : : ; pn, is given. The variable x belongs to some closed interval that onecan, without loss of generality, take to be [�1;+1]. As far as the parameter values are concerned, we shallassume that they belong to an open domain (P ). We shall assume that the function F is continuouslydi�erentiable with respect to both x and pi *. One has to �nd conditions on the values of the parameters pithat are necessary to make the quantity maxjxj�1 jF (x; p1; p2; : : : ; pn)j (6)smaller than for any other values that are su�ciently close.* This assumption is actually present in the original manuscript: \In order to simplify the investigation,we leave aside the case of F or its derivatives with respect to x and the parameters not being �nite andcontinuous." 9



Let L denote the speci�ed maximum, and let the \deviation points" be the points x at which F isequal to �L or +L. Suppose that the number of deviation points is �nite**, and let us denote them byx1; x2; : : : ; x�.Chebyshev claims that if a system of parameter values in hand provides the minimum, then one of thefollowing two statements hold. Either the number of deviation points is at least one more than the numberof parameters � � n+ 1or the rank of the matrix 2664 P11 P12 : : : P1�P21 P22 : : : P2�... ... � � � ...Pn1 Pn2 : : : Pn� 3775 ; (7)where Pik = @F@pi (xk) � @F@pi (xk; p1; p2; : : : ; pn);is smaller than �.This theorem is proved by contradiction. Assume that � � n, so that our matrix has at most as manycolumns as rows and that its rank is equal to the number of columns �. Then the linear system in the nvariables N1; N2; : : : ; Nn nXi=1 PikNi = Fk (k = 1; 2; : : : ; �) (8)has a non-trivial (non-zero) solution for any values of Fk, as long as they are not all zero. Let the numbersN1; N2; : : : ; Nn be a non-trivial solution to the linear system (8) forFk = F (xk; p1; p2; : : : ; pn) (= �L 6= 0):Then there exists a number ! such that the value of (6) at p1�!N1; p2�!N2; : : : ; pn�!Nn is smaller thanits value at p1; p2; : : : ; pn. Indeed, let�(x; !) � F (x; p1� !N1; : : : ; pn � !Nn):Then �(x; !) = F (x; p1; : : : ; pn) � ! nXi=1Ni @F@pi (x; p1 � �!N1; : : : ; pn � �!Nn); (0 < � < 1)and, therefore, �(xk; !) = F (xk; p1; : : : ; pn)� ! nXi=1 Ni�@F@pi (xk; p1; : : : ; pn) + "i� == Fk � !(Fk + nXi=1 Ni"i) = (1� !)Fk � ! nXi=1 Ni"i;where the "i tend to zero as ! tends to zero. If we take ! positive and su�ciently small, we shall havej�(xk; !)j < jFkj;that is, jF (xk; p1 � !N1; : : : ; pn � !Nn)j < jF (xk; p1; : : : ; pn)j (k = 1; 2; : : : ; �):** Note that the number of deviation points may not even be countable.10



From this, using continuity, it is easy to conclude that, for a su�ciently small positive !, the followinginequality also holds maxjxj�1 jF (x; p1� !N1 : : : ; pn � !Nn)j < maxjxj�1 jF (x; p1 : : : ; pn)j:The theorem just proved is fundamental for Chebyshev. It opens the road to computing the parameters.If the number � of deviation points exceeds the number n of parameters by 1 or more, then the relationsF 2(xi) = L2; (x2i � 1)F 0(xi) = 0hold at the deviation points xi. The number of these relations is 2�, and, therefore, if the problem is viewedfrom a standpoint that is characteristic of Chebyshev, the �+ n + 1 variables x1; : : : ; x�, p1; : : : ; pn, and Lcan be computed. If the number � of deviation points does not exceed the number n of parameters, thenthe missing n� �+ 1 equations are obtained after the rank of the matrix (7) is decreased.*The problem considered by Chebyshev in [1], to which he returns here (\the �rst case"), corresponds tothe assumption F (x; p1; : : : ; pn) � p1xn�1 + p2xn�2 + � � �+ pn � f(x)(along with Chebyshev, we take the degree of the approximating polynomial to be n � 1). With thisassumption, Pik = xn�ik ;and, since the xi's are distinct, the matrix (7) has the form26664xn�11 xn�12 : : : xn�1�... ... � � � ...x1 x2 : : : x�1 1 : : : 1 37775 ;and its rank is necessarily equal to �. Therefore, in this case the number of deviation points exceeds thenumber of parameters by at least 1. This �lls the gap left in the \Theory of Mechanisms" [1].Chebyshev's \second case" corresponds to the more general assumptionF (x; p1; : : : ; pn) � %(x)fp1xn�1 + p2xn�2 + � � �+ pn � f(x)g;where %(x) is a given function that is positive on the basic interval (a \weight", in the terminology of morerecent authors). It is easy to check that the rank of the matrix (7) cannot be decreased in this case. Notethat Chebyshev only considers weights of the form%(x) = 1A(x) ; (9)where A(x) is a polynomial that does not vanish on the basic interval.**The \third case" concerns the approximation of a given function by a rational function with variablecoe�cients F (x; p1; : : : ; pn) � p1xn�l�1 + p2xn�l�2 + � � �+ pn�lpn�l+1xl + pn�l+2xl�1 + � � �+ pnx+ 1 � f(x):In this case, as is shown by the computation o�ered by Chebyshev, the number of deviation points xk doesnot necessarily exceed the number n of parameters, but this happens only when the approximating function* The simplest examples that illustrate how the rank of the matrix can be decreased are (1) F (x; p) =(x� p)2 � 1+x22 for p = 0; (2) F (x; p) = 1� x2 � px for p = 0. The geometric meaning in these examples isobvious. In both cases there is only one deviation point.** Recall the �rst problem of Poncelet, where the weight is %(x) = 1px2+1 .11



is a fraction such that the �rst n + 1 � � leading coe�cients vanish both in the numerator and in thedenominator.While mentioning that, \with the help of traditional methods of algebra", the problems of the generaltype he considered \require computations that are absolutely impossible", Chebyshev then takes up somespecialized examples, where he is able to reduce the problem to \questions of indeterminate analysisy".First of all, a di�erent solution (without using di�erential equations) is given to the problem of �ndinga polynomial P (x) of a given degree and with a given leading coe�cient, say equal to 1, that deviates leastfrom zero. Namely, the ratio P2(x)�L2x2�1 is the exact square of a polynomial Q(x) of degree n� 1, so thatP 2(x) � (x2 � 1)Q2(x) = L2: (10)This identity can be rewritten asP (x)Q(x) =px2 � 1 + L2Q(x)[P (x) + Q(x)px2 � 1] ;so it is clear that P (x)Q(x) is a fraction appropriate for decomposing px2 � 1 into a continued fractionpx2 � 1 = x� 1jj2x � 1jj2x � � � � :This allows one to calculate both the polynomial P (x), and the polynomial Q(x), up to a constant multiple,and that can be easily found from an additional condition.An argument of the same kind is used by Chebyshev for �nding the polynomialP (x) that deviates leastfrom zero (with the same additional condition) for the case of an arbitrary weight of the form (9), whereA(x) = mY�=1(x� a�):The identity (10) now generalizes in the following way:P 2(x)� (x2 � 1)Q2(x) = L2A2(x):In the search for the most general form of the polynomials P (x), Q(x), and constant L, Chebyshev uses thefollowing trick. He starts with a \particular" solutionP0(x) = 12� mY�=1�r x� 1�� � 1 +r x+ 1�� + 1�2 + mY�=1�r x� 1�� � 1 +r x+ 1�� + 1�2�;Q0(x) = 12px2 � 1� mY�=1�r x� 1�� � 1 +r x+ 1�� + 1�2 � mY�=1�r x� 1�� � 1 +r x+ 1�� + 1�2�;L0 = mY�=1 2�2� � 1 ;and shows that any solution P (x), Q(x), L must have the property that the polynomials P0(x)P (x)� (x2�1)Q0(x)Q(x) and P0(x)Q(x)� P (x)Q0(x) are divisible by A2(x), while the respective ratiosX(x) = P0(x)P (x)� (x2 � 1)Q0(x)Q(x)A2(x) ; Y (x) = P0(x)Q(x)� P (x)Q0(x)A2(x)y \questions d'Analyse ind�etermin�ee" 12



satisfy the identity X2(x) � (x2 � 1)Y 2(x) = (L0L)2:But all solutions of this last identity are known from the \�rst case". From this, one can immediatelycompute the polynomials P (x) and Q(x), and the constant multiple that enters the solution can be foundfrom the additional condition.The third problem considered by Chebyshev in the memoir under discussion is a generalization of the�rst one, as is the second one, but it is noticeably more complex. Among all rational fractions U(x)V (x) wherethe degree of both numerator and denominator are given (here the coe�cients of both the numerator andthe denominator are now arbitrary), one has to �nd a fraction that deviates least from a given polynomialu(x) of a degree that is one more than the degree of the numerator of the fraction.Based on the derived necessary conditions on the deviation points, Chebyshev concludes that the poly-nomials U (x) and V (x) necessarily satisfy an identity of the form[u(x)V (x) � U (x)]2 � L2V 2(x) = (x2 � 1)W 2(x);where W (x) is some polynomial. Further investigation requires decomposing one of the functionss [u(x) + L](x2 � 1)u(x)� L or s [u(x) + L](x+ 1)[u(x)� L](x� 1)into a continued fraction of the form q0 + 1jjq1 + 1jjq2 + � � �, where the qi denote polynomials. As a result of avery subtle analysis, a precisely formulated rule is obtained that allows one to compute �rst the deviation Land then the fraction U(x)V (x) itself.The memoir under discussion is naturally complemented, without introducing anything fundamentallynew, by Chebyshev's later work \On functions that deviate little from zero for some values of the variables"(1881) [10]. The following problems are solved here:(1) Among all algebraic polynomials of degree n that take on a given value M at a given point x =H (H > 1), �nd the one that deviates least from zero on the interval jxj � 1.(2) Among all trigonometric polynomials* A0 +Pnm=1(Am cosmx + Bm sinmx) of degree n that takeon a given value M at the point x = x1, �nd the one that deviates least from zero in the interval jxj �x0 (0 < x0 < x1 < 2�).The solutions to these problems are expressed in terms of polynomials, namely:(1) M Tn(x)Tn(H) ; (2) M T2n� sin x2sin x02 �T2n� sin x12sin x02 � :4. Best approximation in a normed linear spaceLet us return to Chebyshev's main problem but, in order to get closer to the essence of the questions itraises, we shall give it a more transparent, a more abstract form.We say that a family of elements form a metric space R if, for each pair of elements a and b from R,there is a real number �(a; b), called the distance between a and b, that has the following properties:1� �(a; b) � 0; �(a; b) = 0 if and only if a = b, that is, a and b coincide;2� �(a; b) = �(b; a);3� �(a; b) � �(a; c) + �(c; b) (`triangle inequality').* It deserves special attention that the trigonometric problem, albeit in later work, is nevertheless pre-sented by Chebyshev. 13



A subset E of a space R is called bounded if, for each a in R, the set of numbers �(a; x), where x rangesover E, is bounded. It follows from the triangle inequality that the boundedness of a set E is equivalent tothe existence of at least one element a0 so that the set of numbers �(a0; x), where x 2 E, is bounded.A sequence of elements fxng has limit a if limn!1 �(a; xn) = 0. Any sequence either does not have alimit or has only one limit.The distance �(x; y) is a continuous function of both variables x and y, as follows from the triangleinequality.A subset E is said to be compacty if any bounded in�nite subset of E contains a sequence that converges,that is, has a limit.* A subset E is said to be closed if it contains the limits of all sequences in E that converge.Let E be a subset of the space R, and let a be an element of R. The lower bound L of distances �(a; x),where x ranges over E, is called the distance from the element a to the set E:L � L(a;E) = infx2E �(a; x):If an element x0 of a set E has the property that its distance from a is the same as the distance fromE to a, �(x0; a) = L;then it is said that x provides a best approximation to a from the set E. The quantity L itself is called themagnitude of the best approximation or simply the distance.The questions arise:(1) Does there exist an element x0 in E that provides a best approximation to a?(2) Is this element x0 unique?Let us consider the �rst question �rst.By the de�nition of the in�mum, there is a sequence fxng in E, such thatlimn!1 �(a; xn) = L:Obviously the set that consists of the elements fxng is bounded. If the set E is compact, then one canchoose a convergent subsequence fxpng. Let xpn ! x0. If, in addition, the set E is closed, then the elementx0 also belongs to the space E. Then, since the distance is continuous, �(x0; a) = L, that is, x0 provides abest approximation.So, if a set E in a metric space R is compacty and closed, then, for any a in R, the set E contains abest approximation to a.The case of special interest is that of R being a linear space. This means that the following operationsare de�ned: (1) addition, (2) multiplication by a scalar (real number). These operations satisfy all the usualalgebra laws. The sum of elements a and b is denoted by a+ b. The product of an element a by a scalar �is denoted by �a. The zero element of the space is denoted by 0.A collection of elements a1; a2; : : : ; an of a linear space is called linearly independent if the equationnX1 �iai = 0implies that �1 = �2 = � � � = �n = 0. A space is in�nite dimensional if there exist linear independentcollections with any number of elements. In the opposite case the space is �nite dimensional and themaximum number of linear independent elements is called the dimension of the space.Let the dimension of a space be p, and let e1; e2; : : : ; epy locally precompact, in present-day parlance.* Note that we require that a convergent sequence exists in any bounded in�nite set, as opposed to theusual de�nition of a compact set. 14



be linearly independent elements in the space. Then, for any x in the space, the collection x; e1; e2; : : : ; ep isnot linear independent, and, therefore, there is a dependence of the formx = �1e1 + �2e2 + � � �+ �pep;where �1; �2; : : : ; �p are some uniquely de�ned numbers. Therefore, an element of a p-dimensional linearspace is de�ned by the values of p scalar parameters (coordinates), and this dependence is linear.A linear space is said to be normed if it has a metric de�ned in terms of a norm. For each element a,there is a number kak (the norm of the element a) with the properties:1� kak � 0, kak = 0 if and only if a = 0,2� k�ak = j�jkak,3� ka+ bk � kak+ kbk.A space is called strictly normed if the equationka+ bk = kak+ kbkimplies that �a = �b for some non-negative � and � (�2 + �2 > 0).In a normed linear space a metric is de�ned as follows:�(a; b) = ka� bk:All the required properties of a metric are satis�ed, since they follow from the properties of the norm.In a �nite-dimensional linear space, as we have seen, an element x is de�ned by �nitely many parameters�i. The norm of the element x is a continuous function of the parameters. Indeed, let �(n)i ! �i (i =1; 2; : : : ; p). Then, by setting x(n) =Pp1 �(n)i ei, x =Pp1 �iei, we obtain:kx(n) � xk = k pX1 (�(n)i � �i)eik � pX1 j�(n)i � �ijkeik ! 0;and, therefore, x(n) ! x; kx(n)k ! kxk:This implies that a �nite dimensional normed linear space is necessarily compact and closed . To provethis, look at a closed set of points in the p-dimensional space of parameters �i, for whichmaxf j�1j; j�2j; : : : ; j�pj g = 1:On this set, denoted by K, the function kxk that is continuous in the parameters �i, attains its smallest value�. This value � is positive since kxk becomes zero only if x = 0. Thus, if the largest of the absolute valuesof the parameters is equal to one, then the norm of the element is greater than or equal to �. Let us nowtake a bounded sequence �x(n) 	 of elements. Assume that kx(n)k < M . Let x(n) =Pp1 �(n)i ei. Consider asequence � y(n) 	, where y(n) = x(n)�n ; �n = maxn j�(n)1 j; j�(n)2 j; : : : ; j�(n)p jo :Then the elements y(n) belong to the set K, and, as proved earlier, ky(n)k � �, that is, kx(n)k�n � �, whichimplies that �n � kx(n)k� < M� .But this means that j�(n)i j < M� for all values of i and n, and, therefore, one can choose a subsequencefmn g, so that �(mn)i ! �i (i = 1; 2; : : : ; p), and then x(mn) ! x, where x = Pp1 �iei. This proves com-pactness. The closedness is obtained even more easily.* Indeed, let the elements of the sequence �x(m) 	* The proof is necessary, of course, only in the case when the �nite dimensional space in question is aproper subset of the linear space R. 15



that converges to x belong to a p-dimensional normed linear space E. Assume that ei (i = 1; 2; : : :; ep) isa system of linear independent elements from E, and that x(n) = Pp1 �(n)i ei. Choose a subsequence fmn gso that �(mn)i ! �i (i = 1; 2; : : :; p). Then x(mn) !Pp1 �iei, and, on the other hand, x(mn) ! x, therefore,x =Pp1 �iei, that is, x belongs to E.Collecting the results obtained, one can make the following statement. If the set E in a normed linearspace R is also linear and �nite dimensional, then, for each element a in R, there is an element x0 in E thatprovides a best approximation to a.Passing to the next question { about the uniqueness of best approximation, { let us note here thefollowing su�cient condition, under which uniqueness necessarily takes place. This condition consists of therequirement that the space R be strictly normed.Assume to the contrary that the space E has two di�erent elements x00 and x000 that are best approxi-mations to a, so thaty kx00 � ak = L; kx000 � ak = L; x00 6= x000 ; L > 0:Then, kx00 + x0002 � ak = kx00 � a2 + x000 � a2 k � kx00 � a2 k+ kx000 � a2 k = L:Here the inequality is, in fact, strict, because otherwise, since the space is strictly normed, it would followthat �0(x00 � a) = �00(x000 � a) (�0; �00 � 0; �02 + �002 6= 0)The equality �0 = �00 is impossible because x00 6= x000 . If �0 6= �00, thena = �0x00 � �00x000�0 � �00 ; k�0x00 � �00x000�0 � �00 � ak = 0;which is also impossible. Therefore, a contradiction is obtained:kx00 + x0002 � ak < L:The results presented can be given a somewhat more general form.It is obvious that a subset E of elements of a linear space is a linear space itself if the element �a + �bbelongs to E whenever the elements a and b belong to E, for all scalars � and �.Let us call a set M of elements of a linear space R an a�ne set if the element �a + �b belongs to M ,whenever the elements a and b belong to M , and the scalars � and � satisfy the relation �+ � = 1.Each linear space is an a�ne set. The converse statement holds if and only if the a�ne set in questioncontains the zero element.If x ranges over the elements of a linear space E, and a is an arbitrary element of R, then y = x + aranges over the elements of some a�ne set M . Conversely, if y ranges over the elements of an a�ne set M ,and a is one of its elements, then x = y � a ranges over the elements of some linear space.Let us now consider the following generalized problem: �nd an element y0 of a given a�ne set M thatprovides a best approximation to the zero element . In other words: �nd an element y0 of an a�ne set Mthat \deviates least from zero".The previous remark reduces this generalized problem to the one considered earlier. The results per-taining to the existence and uniqueness of the approximation are thus generalized automatically.Everything discussed above can be given a \geometric" interpretation, by considering the so-called gaugebody of Minkowski.The gauge body (Eichk�orper) or unit ball K is the set of elements x of a linear space R with the normless then or equal to one: kxk � 1:Let us note the following properties of the gauge body:y The case L = 0 is trivial. 16



(1) if an element a belongs to K, then any element �a, where j�j � 1 also belongs to K;(2) K is a convex body. If a and b belong to K, then, given that �; � � 1, �+� = 1, the element �a+�balso belongs to K;(3) in particular, if the space R is strictly normed, then the property (2) is strengthened in the sensethat the element �a+ �b not only belongs to K but it also is in the interior of K. That is, all elements thatare su�ciently close to �a + �b also belong to K.Along with the gauge body K � K1, let us consider the \similar" bodies K� 0 < � < 1) de�ned bythe inequalities kxk � �:It is clear that the bodies K� also have the properties (1){(3).Let us call an a�ne set M supporting for a body K� if the minimum of the norms of elements of E isequal to �. This means, �rst, that there is at least one element that is common to the set E and the bodyK�. And, second, that for arbitrarily small " > 0, the set E and the body K��" do not have any commonelements.Property (2) implies that the set of points that are common to a a�ne set and a body K� is also aconvex set. Property (3) implies that, in a strictly normed linear space, a supporting a�ne set has onlyone common element with the corresponding body K�. If the space is not strictly normed, it then dependson the choice of the a�ne set M as to whether there will be only one common element or an in�nite set(necessarily convex) of them.Let us now turn to the speci�c realizations of the general schemes presented earlier.These speci�c realizations take one form or another, depending on the nature of the elements that makeup the space R, and what is being understood by a \sum", a \multiplication by a scalar", and a \norm". Inthe applications of interest here, the role of elements is played by functions of one or several variables, realor complex, de�ned on a �xed domain (D). The \sum" of the elements is the usual sum of functions. The\multiplication by a scalar" is the multiplication of a function by a constant. As far as, �nally, the \norm" isconcerned, it can be de�ned in di�erent ways, and the resulting \function space" depends on the de�nitionof the norm. Of course, the set of elements of the space depends on the choice of the norm.On the other hand, the role of elements can also be played by points, say, in n-dimensional Euclideanspace (the n-tuples of numbers that are their coordinates). Then the \addition" is \geometric" or \vector"addition, in which the n-tuples are added componentwise. The \multiplication by a scalar" is multiplicationof all coordinates by that scalar. The same can be said about choosing the norm as in the case of functionspaces.The name given to such a space depends on the nature of its elements and the choice of the norm. Thefollowing tabley lists the spaces that will be referred to in the sequel. To be de�nite, we shall restrict thechoice of the functional space to the case of one independent real variable, and we shall even assume thatthe domain (D) mentioned is the �xed interval (�1;+1). Also, � > 0.Notation Elements NormL(s)(%); (s � 1) n f : R +1�1 %(x)jf(x)js dx <1o nR +1�1 %(x)jf(x)js dxo1sl(s)n (%); (s � 1) f (x1; x2; : : : ; xn) g fPni=1 %ijxijs g 1sL(s); (s � 1) n f : R +1�1 jf(x)js dx <1o nR +1�1 jf(x)js dxo 1sl(s)n ; (s � 1) f (x1; x2; : : : ; xn) g fPni=1 jxijs g1sC(%) Continuous functions f . maxjxj�1 %(x)jf(x)jc(%) f (x1; x2; : : : ; xn) g maxi2f 1;ng %ijxijC Continuous functions f . maxjxj�1 jf(x)jc f (x1; x2; : : : ; xn) g maxi2f 1;ng jxijy rearranged to �t the printed page here 17



For brevity, the spaces that are denoted by letters C or c will be called the spaces with Chebyshev'snorm, or Chebyshev spaces. The spaces that are denoted by the letters L or l will be called the spaces withthe power-norm, or power-spaces.In the case of the power-spaces L(s)(%), L(s), the functions that di�er only on a set of measure zero areidenti�ed. Thus, the elements in this case are classes of functions.The triangle inequality is obvious for the Chebyshev spaces. For the L(s) spaces with s � 1, it followsfrom the so-called Minkowski inequality. The case s = 2 is especially important for two reasons. First, themetrics in the spaces L(2) and l(2) are completely analogous to that in Euclidean spaces. And, second, theconditions of the extrema in this case are linear. If s < 1, then the power-spaces become defective in thesense that the triangle inequality fails. Despite this fact, in the case of �nite dimensional a�ne sets, a bestapproximation nevertheless exists.*The L(s) spaces with s > 1 are strictly normed**, and this, as we have seen, implies uniqueness of abest approximation. This kind of statement, however, would be incorrect, for both the L(s) spaces withs = 1 and the Chebyshev spaces. Under these circumstances, it is easy to visualize the situation, given thatin the case of the point spaces l(s)n (%) with s > 1, the gauge body is smooth, and the supporting planes arethe tangent planes. For s = 1 and in the case of the Chebyshev space cn(%), the gauge body is a convexpolyhedron, so that the supporting plane can coincide with the \faces" or the \edges". Finally, for the L(s)spaces with s < 1, even the convexity is lost.The case of a Chebyshev space is especially interesting to us. It is, in some sense, the limit case, sincethe norm in the space L(s) turns into that in the space C as s!1. Whether the problem of approximatingan element a from a linear space E has a unique solution depends, generally speaking, on both the elementa and the space E. However, Haar [47] found a property that characterizes the �nite dimensional linearspaces E in which uniqueness holds for an arbitrary element a. This property consists of the requirementthat every element of the p-dimensional space L be a function with no more than p � 1 zeros in the basicinterval. The systems of functions that generate this kind of spaces were called Chebyshev systems byS.N. Bernstein [27]. The simplest examples are exactly the spaces of polynomials of a given degree witharbitrary weight considered by Chebyshev.In the case of functions of several variables, as in the case of functions of a complex variable, thestatement about uniqueness of a best approximation by a polynomial of a given degree does not hold. The�rst counterexamples were found by Tonelli [72].5. Necessary and su�cient conditions of approximation in Chebyshev problemsIn his majormemoirs [1] and [4], Chebyshev only deals with the spaces that we denoted C or C(%) and heis only interested in approximating a given element { a continuous function { from a �nite dimensional spaceof polynomials of a given degree n. While starting with the \known" fact about the deviation taking on itsmaximal value at least n+2 times, and developing a series of consequences that follow from it, he comes withnecessity to the formula for the sought-for polynomial. The subtle argument by Chebyshev, based on thetheory of continued fractions, was reproduced by Bertrand in his \Calcul di��erentiel" in 1864, and this is howChebyshev polynomials became widely known. However, it took almost half a century before it was noticedthat the original argument by Chebyshev admits signi�cant reduction. Indeed, one can formulate rathersimple necessary and su�cient conditions for a polynomial that provides a best approximation, and then itonly remains to check that the polynomials found by Chebyshev satisfy these conditions. The fact that the\lengthy considerations dealing with the theory of continued fractions" can be avoided was apparently �rstnoticed in 1901 by Blichfeldt, who pointed out [40] that the graph of the deviation on a given interval ischaracterized by the existence \of at least n+2 alternations of two kinds of maxima", while mentioning that* The proof only uses the consequences of the triangle inequality: (1) boundedness of the set; and (2)continuity of the norm. Both follow from the \generalized triangle inequality": there should be a function�(u) de�ned on the interval 0 � u < 1, positive, increasing, and continuous, with the properties �(0) = 0,limu!1 �(u) =1 and �(ka+ bk) � �(kak) + �(kbk). In the case of the L(s) spaces with 0 < s < 1, one cantake �(u) = us.** See, for example, [48], page 148, Theorem 200. 18



he does not know of any original works by Chebyshev where the above property could be found. Indeed,the Collected Works of Chebyshev do not contain anything pertaining to the sign changes of the deviation,which does not imply, of course, that the fact of alternation itself was not known to him.In 1902 in G�ottingen, there appeared a dissertation by Kirchberger [53] where the problem of signs wasgiven full consideration, even in the case of functions of many variables. In the case of one variable, themodern formulation of the approximation conditions was given by E. Borel in his monograph \Le�cons sur lesfonctions de variables r�eelles et les d�eveloppements en s�eries de polynômes" (1905) [41]. A polynomial P (x)of degree n is a best approximation to the function f(x) on some interval if and only if the given intervalcontains at least n+ 2 points xi such that x1 < x2 < � � � < xn+2 and R(xi) = "(�1)iL (" = +1 or " = �1),where R(x) = f(x) � P (x). The su�ciency of this condition follows from the following argument. If thedeviation R(x) = f(x) � P (x) satis�es the condition, and Q(x) is another polynomial of the same degree,such that jf(x)� Q(x)j < L on the given interval, then the polynomialP (x)�Q(x) of degree n has the samesigns at the points xi as does R(x) and is therefore equal to zero at least n + 1 times, which is impossible.The minimal property of the polynomial Tn = cosn arccos x (�1 � x � 1) follows immediately from this,because Tn� cos n� i + 1n �� = "(�1)iL; (i = 1; 2; : : : ; n+ 1);where " = (�1)n+1; L = 1:These conditions can be generalized to the case of many variables, however they become cumbersomeand di�cult to use.Let a function f be approximated in some domain (D) by generalized polynomials of the formPni=1 ci�i,where �i are functions that are continuous in (D), and ci are arbitrary parameters (the variable argumentsare omitted for brevity). Then a polynomial P of the speci�ed form deviates least from f in (D) if and onlyif there does not exist a polynomialQ of the same form that takes on positive values at the points �+ wheref � P = +L and negative values at points �� where f � P = �L. Indeed, if the polynomial P deviatesleast from f and the polynomial Q had the speci�ed property, then, for su�ciently small positive values of�, the polynomial P � �Q would deviate less from f than does P . On the other hand, if there were somepolynomial Q deviating from f in (D) less than P , then the polynomial P � Q would be positive at thepoints �+ and negative at the points ��. In the particular case of only one independent variable and the\polynomials"Pni=1 ci�i obtained from a Chebyshev system of functions �i, the condition formulated aboveis equivalent to the existence of at least n + 1 points of deviation with the alternating signs (Chebyshev-Borel condition). In another particular case of an arbitrary number of independent variables and linearapproximating polynomials, the condition reduces to non-existence of an (n�1)-dimensional plane separatingthe set �+ from the set �� (Kirchberger condition).6. Least-squares approximation and the memoir \On functions that deviate least from zero"Chebyshev's works contain the explicit and generally formulated problem of best approximation to agiven function f(x) by a polynomial Pn(x) of degree n in the space C, that is, with the norm equal to themaximum of the modulus. However, a similar problem in the space L(2), that is, with the norm equal to thesquare root of the integral of the square of the di�erence, was already solved long before then. Indeed, thepolynomial Pn(x) that minimizes the integralZ +1�1 [f(x)� Pn(x)]2 dxis nothing but the sum of the �rst n terms of the Legendre expansion of the function f(x). Chebyshev camevery close to the analogous problem in the space L(2)(%), that is, with an arbitrary weight. However, insteadof an integral, he introduces a sum, distributed over the sequences of points in the given interval. In thisway, he �nds in his 1855 memoir \On continued fractions" [2] the polynomial Pn(x) that minimizes the summXi=1 %(xi)[f(xi)� Pn(xi)]2 (�1 � x1 < x2 < � � � < xm � 1):19



It is interesting that the choice s = 2 is motivated by considerations from probability theory, namely, thee�ect of the error in the interpolation data on the sought-for quantity is being minimized. It already followsfrom Gauss' research that, under the assumption of the normal distribution of the error, the least-squaresmethod should be used for data �tting.Chebyshev's results can be extended, without signi�cant changes, to the case of the integralZ +1�1 %(x)[f(x) � Pn(x)]2 dx:�The polynomial Pn(x) is the sum of n terms in the expansion of f(x) into a series of orthogonalpolynomials of increasing degrees �n(x), (n = 0; 1; 2; : : :)f(x) � 1X�=0 c���(x); c� = Z +1�1 %(x)f(x)�� (x) dx;where the polynomial system f��(x) g is de�ned by the weight %(x) according to the conditionsZ +1�1 %(x)�i(x)�k(x) dx = � 0; i 6= k,1; i = k.In particular, notice the following fact. Among all polynomials of degree n with the leading coe�cientequal to one, Pn(x) = xn + � � �, the integral Z +1�1 %(x)P 2n(x) dxis minimized by a scalar multiple of �n(x). To verify that, it is enough to write Pn(x) as a linear combinationof the orthogonal polynomials ��(x).If %(x) = const, then the polynomials ��(x) turn, up to a scalar multiple, into Legendre polynomials,de�ned by the known expansion 1p1� 2sx+ s2 = 1X�=0X� (x)s� :A more general case %(x) = const(1+x)�(1�x)� was considered by Jacobi in 1859. The respective polynomials��(x) are scalar multiples of the Jacobi polynomials J (�;�)(x) de�ned by the expansion(1 + s +p1� 2sx + s2)�(1� s+p1� 2sx+ s2)�2�+�p1� 2sx+ x2 = 1X�=0J (�;�)� (x)s� :The orthogonality property of Jacobi polynomials was, among other things, derived by Chebyshev directlyfrom this expansion in his 1869 note \On functions that are similar to the Legendre functions" [8].Both theories, the one dealing with uniform or Chebyshev approximation, and the other dealing withleast-squares approximation, are shown to be related in Chebyshev's 1872 memoir \On functions that deviateleast from zero" [9]. Here, as previously, one is looking for a polynomial with the leading coe�cient equalto one, P (x) = xn + � � �, that minimizes the maximum of the modulus in the interval (�1;+1), with theadditional restriction that the polynomial P (x) has to be monotone. That is, P (x) is either non-increasingor non-decreasing. Its largest and smallest values are therefore equal in absolute value, but opposite in sign,so that the maximum of its absolute value is equal to the magnitude of the integralL = 12 Z +1�1 P 0(x) dx:* See Comp., t. II, 1907, page 200. 20



While mentioning that all zeros of the derivative P 0(x) that lie within the interval have to be of even order,and that there should be no zeros outside of the interval, Chebyshev comes to the conclusion that thepolynomial P 0(x) of degree n� 1 has the formP 0(x) = n(x� 1)%(x+ 1)%0U2(x);where the numbers % and %0 can have values 0 or 1. Therefore, one obtainsL = n2 Z +1�1 (x� 1)%(x+ 1)%0U2(x) dx:It is now easy to minimize this integral by considering the multiple (x � 1)%(x+ 1)%0 as a weight. Oneonly needs to distinguish between the four possible cases of values of % and %0, depending on the parity ofn, and on whether the polynomial P (x) is increasing or decreasing.The polynomial U (x) is a scalar multiple of the Jacobi polynomial J (�%0;%)n�1�%�%02 (x), which Chebyshev�nds from the generating function obtained earlier. It is not necessary to present the details and the exactresult of the computations. Let us only note that the additional requirement of monotonicity does nota�ect the deviation much. Without the restriction it is exactly equal to 12n�1 , while with the restriction it isasymptotically equal, as n!1, to �n2n , that is, it only increases by a factor of �2n. This comparison, which isnatural in present research, did not escape Chebyshev. In his memoir, he gives, by the way, not an asymptoticestimate of the result, but an exact estimate with an inequality. In any case, these circumstances testifyto the fact that, despite the exact content of his work and his reputation, Chebyshev was not indi�erent toasymptotic questions.7. Applications of the theory of best approximation by Chebyshev. Chebyshev's latest worksChebyshev's statements about the relationships between a mathematical theory and its applicationsillustrate quite clearly not just the source of his creativity, but also his scienti�c and philosophical positions.He says \The convergence of theory and practice gives the most fruitful results, and it is not just thepractice that gains from it. The sciences themselves are being developed under its in
uence. It opens newresearch subjects, or new aspects in subjects that are already known for a long time: : : If a theory gainsmuch from a new application of an old method, or from its new developments, then it receives even more bydiscovering new methods, and in this case science �nds a reliable advisor in practice." Without any doubt,when Chebyshev wrote these words, he was thinking mainly about the theory of best approximation createdby him. In addition, even though Chebyshev's works of the early period belonged, judging by their topicsand within the tradition of his great predecessors, to the abstract areas of science, and even though helater made a sharp turn, as we have mentioned, towards practical applications, in the latest period, bothtendencies went hand in hand, and they are united in some harmonic balance. Furthermore, it is necessaryto note that applications are understood by Chebyshev in a broad and original sense. They are not limitedto the area of technical sciences, but are rather related to very di�erent forms of human activity, or servethe internal needs of mathematics itself (designing tables, interpolation, quadratures, solving equations).They are being evaluated critically from the viewpoint of the relationship between the \means" used andthe \goals" achieved.It is not quite true that Chebyshev's works re
ect completely the family of questions to which he hada chance to apply the methods of approximation that he developed and which he used with incomparablepro�ciency. Rather, his works contain just a portion of such applications. Having made this remark, let usnow consider the applications that Chebyshev mentions explicitly.i. Kinematics of mechanisms. As was already mentioned, this is the point of origin for the theory ofapproximation of functions by polynomials, or, generally speaking, by functions of various kinds that dependon several parameters. This is his favorite area and it attracted his thought for several decades. It is not thepurpose of this article, however, to give consideration to the numerous notes that are related to this subject.ii. Solving algebraic equations (separating roots). In the memoir [4], there are about ten theorems (6-11,15-19) that are derived from the basic propositions on best approximation. These theorems state that, under21



certain conditions, the polynomial of interest has at least one zero in some interval. The length of the intervaldepends, on the one hand, on the value of the polynomial at the center of the interval, on the other hand, onspeci�c assumptions on the coe�cients or on the zeros of the polynomial. For example, Theorem 10 statesthat if the polynomial f(x) = x2n+1+ � � �+K does not contain any even powers of x, then it has at least onezero in the interval jxj < 2� jKj2 � 12n+1 . Let us give a proof, assuming, of course, that K 6= 0. If the polynomialf(x) did not have any zeros in the speci�ed interval, then the same would be true for the polynomialsf(x) � 2K and [f(x) � K]2 � K2 � f(x)[f(x) � 2K]. Since the latter polynomial is negative at x = 0, itwould also be negative in the whole interval jxj < 2� jKj2 � 12n+1 , so that f(x)�K would deviate from zero byless than K. But this is impossible since it means that the polynomial 122njKjf�2x� jKj2 � 12n+1 � � x2n+1 + � � �would deviate from zero by less than 122n on the interval jxj < 1. Let us also formulate Theorem 9, which usesa di�erent assumption: if a polynomial of degree n with leading coe�cient equal to one, f(x) � xn + � � �,has only real roots, then, for any t, there is a real root in the interval jx� tj < 4 nq jf(t)j4 . Later, in his1872 memoir, using a result on monotone polynomials, Chebyshev narrows the interval, replacing it withthe following: jx� tj < 4 nq jf(t)j2(n�1)� .*iii. Interpolation (remainder estimate). To minimize the error in the Lagrange interpolation formula,Chebyshev suggests to take the nodes of the interpolation [say, in the interval (�1;+1)] to be the zerosof the polynomial Tn(x) � cos n arccos(x), since, for a given function f(x), the remainder has the formR(x) = f (n+1)(�)Pn(x), where Pn(x) = Qni=1(x � xi), and xi are the nodes. Therefore, with Rn(x) �Mn+1max jPn(x)j, where Mn+1 = max jf (n+1)(x)j, the choice Pn(x) = Tn(x) is the most pro�table. HereChebyshev partly envisions the later result of Runge, that says that, as n ! 1, Chebyshev interpolationconverges for any function that is regular in the basic interval (while this is not true for Newton interpolationwith equally spaced nodes).iv. A rule for �nding approximately distances on the surface of the Earth.** Let us quote it completely:\(1) take the di�erences between the two latitudes and the two longitudes and express them in minutes; (2)double the di�erence of the latitudes; (3) out of these two numbers, the di�erence of longitudes, and thedoubled di�erence of latitudes, multiply the smaller by three, multiply the larger one by 7, and then add thetwo products; (4) the result divided by three will give the desired distance in versts."It is not di�cult to guess that here one is talking about applying the approximating formula of Ponceletpa2 + b2 � �a+ �b to the in�nitesimal formula�s � Rp�u2 + cos2 u�v2;where �s is the length of the main arc connecting the two points, R is the radius of the Earth, which isequal to 5971 versts, u is latitude, and �u and �v are the di�erences of latitudes and longitudes, in radians.The Poncelet parameter k is obviously taken to be 1. The rule was probably obtained in the following way:Rp�u2 + cos2 u�v2 = R cosus�v2 + � �ucos u�2 � R cosup�v2 + (2�u)2 �� R cosu(�minf�v; 2�u g+ �maxf�v; 2�u g) == R�180 � 60 cos u(�minf�V; 2�U g+ �maxf�V; 2�U g) == cosu(1:67minf�V; 2�U g+ 0:68maxf�V; 2�U g);where �U and �V are the di�erences of latitudes and longitudes in minutes. The coe�cients 78 and 38 inthe formulation of the rule indicate that cosu was approximately taken to be 0.53, which corresponds to thelatitude of 58�.v. Approximate quadratures. The applications of best approximation to this particular question werethe subject of Chebyshev's last two works: \On approximate expressions for the square root of a variable* A further improvement of this result is due to A.A. Markov [58].** Printed in [13]. 22



in terms of simple fractions" (1889) [11], and \On polynomials that represent the values of the simplestrational functions best when the argument is bounded between two given limits" (1892) [12]. Chebyshevwrites: \While computing quadratures, it is often necessary to replace the functions that present di�cultyfor integration by approximate expressions". In the �rst of the two articles mentioned, the problem of thebest relative approximation to the expression 1px by a rational expression of the form A+Pn1 BiCi+x is beingsolved, and a special application to computing integrals of the form R UpV dx is given, in particular, forelliptic integrals Z tgp�1 xp1� �2 sin2 x dx (0 < p � 1):In the second article, an approximate equality is established for the interval jxj � h1H � x � 1Tn�Hh � � Tn�xh� � Tn�Hh �x�H (h < H):This means that, among all polynomials of degree n�1, the one on the right gives the smallest relative erroron the interval jxj � h. This allowed Chebyshev to approximate the integrals of the form R +h�h f(x)H�x dx bylinear combinations of integrals of the form R +h�h xkf(x) dx.vi. Constructing geographic maps. If one needs to draw on a map some piece of the Earth' surface witha given boundary, then there is a choice among in�nitely many projections that provide the in�nitesimalsimilarity and preservation of the scale in each point and in all directions. These are the so-called conformalprojections. However, as follows from Gauss' Theorema egregium, among all conformal projections of a ballto a plane, it is impossible to �nd a projection that would preserve the scale for all points of the surface.In a talk given on January 30 (18) of 1856 published under the title \Sur la construction des cartesg�eographiques" in the \Notes of the Academy of Sciences" [3], Chebyshev posed the problem of �nding aconformal projection for which the logarithm of the scale would vary within tightest possible bounds, that is,it should have the smallest possible deviation from some average value. Without a proof, he claimed that, ifthe speci�ed condition is satis�ed, then the scale should be constant on the boundary of the map (note thatthis last requirement can be satis�ed by the Dirichlet principle). Chebyshev's statement was proved muchlater by Academician D.A. Grave.*The problem is reduced to �nding a function U harmonic in the given domain (D) that deviates leastfrom some given function �. In the simplest case, �� does not change sign in the domain (D), where � isthe Laplace operator. That is, as one now says, the function � is subharmonic or superharmonic. In thecartographic problem of interest here, one has to deal with a superharmonic function.In the simplest case just mentioned, it turns out that the function U only di�ers by an additive constantfrom some harmonic function U0 that coincides with � on the boundary (so that U0 < � in the interior ofD) U = U0 +C:As far as the constant C is concerned, it is easy to see that it equalsC = 12 max(D) (�� U0):* See [45]. The proof is simpli�ed in [46]. It is reproduced in an article by N.G. Chebotarev in \Acollection devoted to the memory of Academician D.A. Grave", 1940.23



8. The extremal problems solved by E.I. Zolotarev, A.A. and V.A. Markov, and N.I. AkhiezerAlready in Chebyshev's time, research in the theory of best approximation of functions was continuedby other authors { his students.For example, E.I. Zolotarev in his 1868 dissertation [78] considered the problem of �nding a polynomialof the form Pn(x) = xn + �1xn�1 + p2xn�2 + � � �+ pn (�1 is given);that deviates least from zero on some given interval. It turned out that the solution could be expressed,generally speaking, in terms of elliptic functions, similar to Chebyshev's simplest problem where the solutioncan be expressed in terms of trigonometric functions. A di�erent problem, to minimize the polynomial ofthe form Pn(x) = xn + p1xn�1 + � � �+ pnon some given interval, with the additional conditionPn(H) =M (H > 1);reduces to the �rst problem.In 1884, A.A. Markov generalized Chebyshev's \second case" [56] to the case of a weight of the form%(x) = 1pf(x) ;where f(x) is a given polynomial of even degree.In 1889, the same author [57] answered the question posed by D.I. Mendeleev in his work \An inves-tigation of liquid substances by their speci�c weight" (x 86): Assuming that the maximum of the absolutevalue of some polynomial Pn(x) of degree n on the interval jxj � 1 is equal to 1, �nd the upper bound forthe maximum of the modulus of its derivative in the same interval. Markov proved that this upper bound isequal to n2. As is easy to check, it is attained by the Chebyshev polynomial at the points �1. In particular,this implies that the polynomial Tn(x) is a solution to the following problem. Among all polynomials ofthe form Pn(x) = p0xn + � � � + pn with absolute value not exceeding 1 in the interval jxj � 1, �nd theone that maximizes the quantity P 0n(1) = np0 + (n � 1)p1 + � � �+ pn�1. This problem is equivalent to thefollowing one. Among all polynomials Pn(x) = p0xn+ � � �+pn with coe�cients satisfying the linear conditionnp0 + (n� 1)p1 + � � �+ pn�1 = 1, �nd the one that least deviates from zero.In 1892, V.A. Markov, the younger brother of A.A. Markov, formulated [60] a general problem of �ndinga polynomial Pn(x) of degree n that deviates least from zero on the interval jxj � 1 under a given linearcondition on the coe�cients �0p0 + �1p1 + � � �+ �npn = 1;which is equivalent to computing the maximumof j�0p0+ � � �+�npnj under the condition maxjxj�1 jPn(x)j �1. In particular, he found the upper bounds ��P (n�k)n (0)(n�k)! �� = jpkj under this condition. In other words, he foundthe polynomials of degree n that deviate least from zero when the coe�cient of an arbitrary power of x isgiven. Besides, in connection with the problem of least deviation under the condition P (k)n (�) = 1 (where� is a given value of x), V.A. Markov found the exact upper bounds on the expression maxjxj�1 jP (k)n (x)junder the assumption maxjxj�1 jPn(x)j = 1.The problem of �nding a polynomial of degree n that deviates least from zero under two linear condi-tions on the coe�cients (a generalization of the Zolotarev problem: p0 = 1, p1 = �) was studied later byA.P. Psheborsky [62] and other authors.More recently, the research in best approximation in the classical direction started by Chebyshev andZolotarev was successfully continued by N.I. Akhiezer, who obtained a series of new exact results in hismajor 1928 work [15]. Of them, we shall just mention a few:1. A solution to the Zolotarev problem of minimizing a polynomial with two given coe�cientsPn(x) = xn + �1xn�1 + p2xn�2 + � � �+ pn24



with an arbitrary Chebyshev weight %(x) = 1A(x) , where A(x) is a polynomial.2. A solution to the problem of minimizing a polynomialPn(x) = xn + �1xn�1 + �2xn�2 + p3xn�3 + � � �+ pnwith three given coe�cients under a constant weight.3. A solution of the fundamental problem of minimizing a polynomial with one given coe�cientPn(x) = xn + p1xn�1 + � � �+ pnfor the case of two intervals �1 � x � �; � � x � 1 (�1 < � < � < +1).Out of further results of N.I. Akhiezer we shall mention the following:1. A solution to the problem of minimizing a polynomial Pn(x) on two intervals under additionalconditions of the form Pn(xi) = yi (i = 1; 2; : : :; l) [17].2. A signi�cant improvement of the method used by Chebyshev for approximating a polynomial bya rational function with variable coe�cients in both the numerator and denominator (Chebyshev's \thirdcase"). Without using continued fractions, N.I. Akhiezer obtains the least deviation as a root of an algebraicequation, while the coe�cients are determined from a system of linear equations [16].As far as the methodology is concerned, N.I. Akhiezer widely uses the elliptic functions, as doesZolotarev, which is connected to the nature of the problems themselves. On the other hand, the proofsare based on the theory of functions of complex variables, including some newest results in this area.As an example of this kind of proof, let us present a solution to Chebyshev's main problem (\the �rstcase").According to the necessary conditions, the minimizing polynomialy � Pn(x) = xn + p1xn�1 + � � �+ pntakes on its extremal values �L exactly n+1 times in the interval �1 � x � +1. Therefore, the polynomialy2 � L2 of degree 2n has 2n zeros in this interval, counting multiplicity. Let us consider the behavior of thefunction of a complex variable � = y +py2 � L2Lin the domain (D) obtained by removing the interval (�1;+1) from the extended complex plane (here thesign of the radical is chosen according to the condition � =1 when y =1). We then havey = L2 �� + 1� �:The function � of the variable x is regular in the domain (D), since y2 �L2 6= 0. It does not have any zerosin (D) and it has a single pole of order n at x =1. Its values on the boundary of the domain have absolutevalue 1, since it follows from jyj � L thatj�j = �� yL +s� yL�2 � 1���� = �� yL + is1� � yL�2���� = 1:Set � = x+px2 � 1; x = 12�� + 1��(here the sign of the radical is taken according to the condition: � =1 when x = 1). The domain (D) inthe x-plane is mapped, under these relations, into the exterior of the disk j�j � 1, and, if one considers � asa function of �, then it turns out that the function is regular when j�j > 1, has a pole of order n at the point� =1, and j�j = 1 on the boundary j�j = 1. This implies� = c��n;25



where c is a constant with modulus one. If one replaces � by 1� , the value of x, and, therefore, the value ofy do not change, which implies that c = �1. Thus,y = �L2 (�n + ��n) = �L2 n (x+p1� x2)n + (x�p1� x2)no = �LTn(x);while the comparison of the leading coe�cients shows that the sign is `+' and thatL = 12n�1 :9. The connection between best approximation and di�erential properties of a function.The works of S.N. BernsteinA new content was given to the theory of best approximation of functions in the �rst decade of thecurrent century.It originated from a proposition established in 1885 by Weierstrass, the head of the Berlin school ofmathematics. For any function f(x) continuous on a given interval a � x � b and for any " > 0, there is apolynomial P (x) such that maxa�x�b jP (x)� f(x)j � ": (11)By considering a sequence of values f "n g converging to zero, we conclude that the function f(x) is thelimit of a uniformly converging sequence of polynomials. Since Weierstrass also proved that the limit of auniformly converging sequence of continuous functions is also a continuous function, the property establishedbyWeierstrass is exactly equivalent to the continuity of the function in the given interval. In other words, \theset of polynomials is everywhere dense in the set C", or \the system of power functions 1; x; x2; : : : ; xn; : : :is fundamentaly".The discovery of Weierstrass, despite its deep and fundamental value, was not immediately appreciatedand did not invoke immediate responses. This can be explained, on one hand, by the fact that it did notseem impressive since there were some vague ideas about representing an \arbitrary" function by an analyticformula that were prepared by Fourier, Dirichlet, and Riemann, and, on the other hand, since the Weierstrasstheorem was the �rst stone in the fundament of functional analysis and a solid basis for further developmentof this new direction was not yet in place.This all changed soon after the appearance of Lebesgue's works and Borel's monograph \Le�cons surles fonctions des variables r�eelle" [41]. A question arose: what is the dependence between the number " inthe inequality (11), that is, between the \deviation" of the polynomial P (x) from the function f(x) and thedegree of P (x), and it was very soon correctly pointed out that the answer to this question depends on thedi�erential properties of the function f(x). The lower bound on the numbers " in the equation (11) for agiven degree of the polynomial P (x) is exactly the least deviation of the polynomial P (x) from the functionf(x) considered by Chebyshev. Upon denoting this deviation (�ecart) by En(f), we see that the sequence ofnumbers En(f) is non-increasing, and by the Weierstrass theorem,limn!1En(f) = 0:While Chebyshev was interested in the exact computation of the number En(f) for a given n, and also inconstructing the corresponding uniquely de�ned polynomial P (x), it was important from the new viewpointof function theory to determine the rate at which the numbers En(f) decrease. Therefore, the asymptoticside of the best approximation problem is now taking precedence.It is not surprising that initial attention was paid to continuous functions with the simplest kinds ofsingularities, namely the functions whose graphs have a corner (for example, f(x) = jxj, at x = 0). Furtheralong in the queue were more general classes of functions, namely those that are not di�erentiable on a giveny lit.: has the property of completeness 26



interval, such as f(x) = jxjs (s > 0). In 1903, the Belgian Academy of Sciences, following a suggestion ofits member de la Vall�ee-Poussin, posed the following research challenge: \To present new investigations inthe area of expanding real or analytic functions into series of polynomials". De la Vall�ee-Poussin posed thefollowing precise question: \Is it possible to approximate a polygonal line, or, which is the same, jxj, in theinterval [�1; 1] by a polynomial of degree n at a rate higher than 1n?" In other words, is it possible to replacethe expression En(jxj) = O( 1n ) by a more precise En(jxj) = o( 1n )?Research in this direction was started by de la Vall�ee-Poussin himself. In a work published in 1910[74], he demonstrates a trick that allows him to get a lower bound on En(jxj), whereas any approximatingpolynomial, obviously, gives an upper bound, and he uses the trick to obtain the inequalityEn(jxj) > kn lg3 n (k > 0):Approximation of jxj1=2 is also considered there.One year later, the Belgian Academy of Sciences was presented a work that completely answered thequestion posed. In his account, de la Vall�ee-Poussin said that this work is \the most valuable contribution tothe area of expanding functions into polynomial series, judging by both the number and the importance ofthe results it contains". This was the work [19], which later became the Ph.D. dissertation of S.N. Bernstein,who is presently an academician.Let us brie
y mention the most signi�cant results of this work.(1) The question posed by de la Vall�ee-Poussin was answered negatively: there are positive numbers Aand B such that An < En(jxj) < Bn :(2) If En(f) = O( 1np+" ), then the function f(x) has a continuous derivative of order p.(3) If En(f) = O(%n), where 0 < % < 1, then the function f(x) is regular not only on the basic interval[�1;+1], but also in the ellipse with the foci �1 and with the sum of the semi-axis equal to 1=%. Theconverse is also true. If a function f(x) is regular in the closed ellipse with the foci �1 and with the sum ofthe semi-axis equal to 1=%, then En(f) = O(%n):(4) As a tool in his proofs, S.N. Bernstein uses the following theorem, of great independent interest. IfPn(x) is a polynomial of degree n, then the inequalitymax�1�x�+1 jPn(x)j � 1implies the inequality jP 0n(x)j � np1� x2 (�1 < x < +1):(5) An upper bound on En(f) is established as a function of the upper bound on jf (n+1)(x)j in a giveninterval.(6) A regular method for estimating En(f) is speci�ed (a parametric method using analytic continua-tion).(7) A criterion is given for the fundamentality of the systemx�1 ; x�2; : : : ; x�n; : : : (0 � �1 < �2 < � � �< �n < � � �):�While the connection between di�erential properties of a function and the order of best approximationby polynomials of degree n was studied in France, it also gained attention, in a more general setting, inG�ottingen. Here, largely due to E. Landau, another challenge problem of the same type was announced.Already in 1911, the American mathematician D. Jackson [51] presented a dissertation, in which he proved* See the details in [61] and [68]: the system is fundamental i� the series P 1�n diverges.27



a series of theorems that are converses to Bernstein's theorems. From the positive assumptions on thedi�erential properties of a function being approximated, conclusions are drawn about the rate En(f) of bestapproximation.**By 1912, a rather complete theory was formed based on the results of S.N. Bernstein and D. Jackson,that became the main part of the report presented by S.N. Bernstein at the International MathematicsCongress in Cambridge [21].About the same time, Bernstein [20] studied Chebyshev's \second case" (weighted approximation), andfound the exact value of En� 1x�a�, where jaj > 1, and the asymptotic value of En� 1(x�a)k �. This gave theasymptotic value of En(f) for an arbitrary function f(x) regular in the interval �1 � x � +1, under thefollowing condition: the smallest ellipse with foci �1 at which the function is not regular, but is still regularin the interior of the ellipse, contains only one algebraic singularity. If there are many such singularities, thepicture becomes more complicated.All the wonderful results obtained during those few years led to the idea that the rate of decreaseof En(f) could be taken as a basis for a uni�ed classi�cation of functions of real and complex variables.Thoughts to that e�ect were re
ected in S.N. Bernstein's memoir \Sur la de�nition et les propri�et�es desfonctions analytiques d'une variable r�eelle" [22] published in 1914 inMath. Annalen. By considering algebraicpolynomials as the major elementary basis for the theory of functions, Bernstein founded a new direction inthe theory of functions, which he later named \constructive".There is no doubt that World War I had a negative in
uence on the further development of approxi-mation theory. But already in 1919, there appears a new monograph by de la Vall�ee-Poussin \Le�cons surl'approximation des fonctions d'une variable r�eelle" [75], which synthesized in a systematic way the manyfacts obtained, starting with Weierstrass, in functional approximation theory. Note one property of thisbook. It is the �rst book to precisely pose and study (in connection to each other) two analogous problems:approximating a function given on an interval of the real line by an algebraic polynomial of degree n andapproximating a periodic function with period 2� by \trigonometric polynomials" of degree n (de la Vall�ee-Poussin still called them \trigonometric sums"). The trigonometric polynomials, as we have seen, can be�rst found, in some speci�c problems, in Chebyshev's work of 1881.Another major contribution to approximation theory was a French monograph by S.N. Bernstein \Le�conssur les propri�et�es extr�emales et la meilleure approximation des fonctions analytiques d'une variable r�eelle"[27] published a few years later, which was based on lectures given at the Sorbonne in 1923. In a revisedversion, it was published much later in Russian under the title \Extremal properties of polynomials" [35]. Itcontains, on one hand, a large number of results by Chebyshev, by the Markov brothers, and by the authorhimself. On the other hand, it contains a large amount of new material, which is in part discussed below. Fornow, we note the following particular questions: (1) the asymptotic value of the least deviation from zero ofa polynomial of degree n with an arbitrary number of given highest coe�cients, and an arbitrary weight; (2)�nding the next terms in the asymptotic expansion for the least deviation from zero of elementary rationalfunctions; (3) a deep investigation of best approximation of functions with an essential singularity.Very recently, S.N. Bernstein returned to the problem of best approximation of the simplest functionsthat are not in�nitely di�erentiable, jxjs (s > 0), and proved in [37] an asymptotic equality, for n! 1, ofthe form En(jxjs) � �(s)ns ;where �(s) is a continuous function of the variable s that naturally takes the value zero at even integers s.He also established in [38] a more general relationEn(jx� cjs) � (1� c2)s=2�(s)ns (�1 < c < +1)and found a method for computing En(f) asymptotically for an arbitrary function f(x) that has only a�nite number of \corners" on the basic interval. Thus, the case of \algebraic-logarithmic singularities" in** In this connection, let us note, by the way, a very recent and very precise result by N.I. Akhiezer andM.G. Krein [18], who found an upper bound on the best approximation by trigonometric polynomials ofdegree n for the class of periodic functions f(x) satisfying the inequality max jf (r)(x)j � 1.28



the basic interval was considered as thoroughly as the case when the singularities of this kind are locatedoutside the interval.10. Further results dealing with best approximation of functionsIn this section, we will discuss some of the newest developments that are more or less close to the majorline drawn by Chebyshev but can, strictly speaking, at times lie outside of the circle of his ideas, but thatnevertheless carry the mark of Chebyshev's style. It is also very important to note that Chebyshev's ideasare penetrating, at an increasing rate, areas such as the theory of functions and functional analysis that wereinitially foreign to them.In 1928, S.N. Bernstein [30] generalized the notion of an increasing function by introducing multiplymonotone functions. To be precise, a function is called multiply monotone of order h+ 1 in a given intervalif all of its derivatives up to (and including) those of order h + 1 are non-negative on the given interval.Already for the most general multiply monotone functions f(x), some extremal problems arise. In particular,Bernstein found bounds for f (k)(x0), where x0 is an internal point of the interval, while the values of f(x)at the end points of the interval are given. We shall not discuss here the subject of absolutely and regularlymonotone functions, which opened a new chapter in the modern theory of functions of a real variable. Weshall only mention that Bernstein formulated the main problems of Chebyshev (�nd a polynomial thatdeviates least from zero when the leading coe�cient is given) and Markov (�nd a polynomial that deviatesleast from zero when the derivative at some point is given) in the case of multiply monotone polynomials.As we have seen, Chebyshev had considered the �rst of these two problems in the case of standard monotonepolynomials, and the solution turned out to be connected to Jacobi polynomials. The latter is also true inthe more general case of multiply monotone polynomials. Later, a whole series of various versions of theclassical problems were considered by S.N. Bernstein' students { Ya.L. Geronimus and V.F. Brzhechka { forthe case of monotone and multiply monotone polynomials.A new development was given to classical problems in the spaces L(1) and L(1)(%). Chebyshev himselfconsidered the integral of the absolute value of a function in the memoir \On interpolation in the case of alarge number of data points obtained from an observation" [5]. Furthermore, in 1873, Korkin and Zolotarev(inspired by Chebyshev?) solved the problem of �nding a polynomial of given degree with a given leadingcoe�cient that minimizes the integral of the absolute value. It turned out that the polynomial of interest is,up to a scalar multiple, equal to Un(x) = sin(n + 1) arccos xp1� x2 :The next more general result was formulated in 1927 by Bernstein [28], who found that, under rather generalassumptions, the polynomial that deviates least from a given continuous function in the sense of the spaceL(1) is the interpolation polynomial with the nodes being the zeros of the polynomial Un+1(x). From this,by the way, it follows immediately that the polynomial Pn(x) with a given leading coe�cient that minimizesthe total variation, that is, the integral Z +1�1 jP 0n(x)j dx;again, coincides, up to a scalar multiple, with Chebyshev's polynomial Tn(x). In 1934 and later, research inthis direction was continued by Ya.L. Geronimus, V.F. Brzhechka and N.I. Akhiezer.The application of Chebyshev's ideas to generalized polynomials as well as to function spaces of moregeneral type began with a paper written in 1907 by the American mathematician Young [77]. In 1913, Polyaproved [63] that the polynomial of degree n deviating least from a given function in the space L(2k) (k beingan integer) tends to the polynomial deviating least from that function in the Chebyshev space C as k !1.He remarked that the idea of power-norms is due to K. Runge (but its roots are even deeper; recall theso-called \Gr�a�e method"). In the 20s, Jackson took up approximation theory in L(s)-spaces and showedhow best approximation depends on analytic and di�erential properties of the function. ** We refer the reader to Jackson's monograph [52].29



It is more or less clear that �nding exact solutions to problems of Chebyshev type cannot be guaranteed inarbitrary L(s)-spaces. The question then becomes one of existence, of estimating the error of approximation,or of developing algorithms that converge. E. Ya. Remez, in particular, worked in that last direction.A. N. Kolmogorov [54] posed the question of the best (in the sense of Chebyshev) choice of the basisof \generalized polynomials" in an arbitrary metric space for a class of functions to be approximated. Hesolved the problem for a particular class of functions in the space L(2).It often happened that complex analysis elucidated phenomena taking place on the real line. Approxi-mation theory was no exception. In 1919, G. Faber [43] introduced the notion of the Chebyshev polynomialTn(z) = zn + p1zn�1 + � � �+ pn (12)that deviates least from zero on a given closed simply connected subset M of the complex plane. Heestablished a connection between the polynomial Tn(z) and a conformal mapping of the complement of Monto the exterior of a certain disk (this question is related to the Robin constant from potential theory),investigated the location of the roots of the polynomial Tn(z), and found these polynomials explicitly forsome speci�c sets M . For example, if M is an ellipse with foci �1, then the corresponding polynomial (12)coincides with the usual Chebyshev polynomial 12n�1 cos n arccos z. But the most remarkable result { thesolution to the Markov problem in the complex domain, i.e., �nding a polynomial that deviates least fromzero and has a prescribed value of its derivative at a given point { was obtained by Szeg�o [70]. Thisgeneralization clari�es that fact that the inequality max�1�x�1 jPn(x)j � 1 implies a bound of order n forjP 0n(x)j at all interior points of the interval [�1;+1] as well as a bound of order n2 at the end points (A.A. Markov's inequality). By considering domains enclosed by �nitely many analytic arcs, Szeg�o establishesthat the upper bound on jP 0(z0)j, where z0 2M , depends on the boundary of M and the location of z0. Forpoints z0 in the interior of M , Cauchy's integral formula yields a bound of the form O(1)�2 , with � the distancefrom z0 to the boundary of M . If z0 belongs to the boundary of M and lies on only one of the analytic arcs(so that the boundary of M has a tangent line at that point), then the bound is of order O(n). Finally, if z0is the endpoint of two of the analytic arcs and the angle between their tangent lines (external with respectto M ) equals ��, then the bound is of order O(n�). For the end points of the interval [�1;+1], the value of� is 2, which explains the increase in the order of the bound.The systematic transfer of the methods of uniform Chebyshev approximation to the complex domainwas begun in 1930 and undertaken by Jackson and Walsh. The rich material on that topic is collected in thebook of the latter author \Interpolation and approximation by rational functions in the complex domain" [76]published in 1935.Let us now turn to a question similar to the above-mentioned problem of V. A. Markov, namely to atheorem due to S. N. Bernstein that recently attracted much attention. In its most primitive formulation, thetheorem deals with trigonometric polynomials of degree n and can be stated as follows. IfMn is the maximumof the absolute value of a polynomial and M 0n is the maximum of the absolute value of its derivative, thenM 0n � nMn: (13)Applying this theorem to an even polynomial (containing only cosine terms) in a variable � and making thechange of variables cos � = x, one obtains an inequality for an algebraic polynomial of degree n:M 0n � nMnp1� x2 : (14)Conversely, the inequality (14) is easily seen to imply the inequality (13). Of the many proofs of Bernstein'stheorem, M. Riesz' proof [66] stands out as the simplest and most elegant. As was shown by Bernstein [31], theinequality (13) is preserved in the asymptotic form for weighted maxima. If Mn = max�1�x�1 %(x)jPn(x)j,M 0n = max�1�x�1 %(x)jP 0n(x)j, then we obtainM 0n � (1 + "n)nMn;with "n depending only on n and tending to 0 as n!1.30



A. A. Markov's inequality generalizes to the setting of the space L(s), viz.M 0n � A(s)n2Mn;where Mn = fZ 1�1 jPn(x)js dxg1=s; M 0n = fZ 1�1 jP 0n(x)js dxg1=s;and A(s) depends only on s [49].The complex analog of Bernstein's theorem is derived by him in [27] and has the formM 0n � nMn;where Mn = maxjzj�1 jPn(z)j; M 0n = maxjzj�1 jP 0n(z)j:Van der Corput and Schaake [73] found an analog of inequality (13) for binary forms of a given degree.If f(x; y) is a form of degree n, then the inequality (13) holds withMn = max jf(x; y)j(x2 + y2)n2 ; M 0n = maxq��@f@x ��2 + ��@f@y ��2(x2 + y2)n�12 :They also obtained strengthened versions of the inequality (13). For example, if Mn denotes the maximumof the absolute value of a trigonometric polynomial Sn(x) of degree n, then, for all x,jS0n(x)j � npM2n � S2n(x):S. N. Bernstein obtained a formal generalization of this original theorem by �nding an upper bound of theratio M 0nMn , where Mn = maxx j nXm=0(am cosmx+ Bm sinmx)j;M 0n = maxx j nXm=0�n�m(am cosmx +Bm sinmx)j;under some restriction on the positive constants �i [34]. G. Sokolov [67] considered the case �n�m = m�(m = 0; 1; : : : ; n) in detail.The following far-reaching generalization of Bernstein's inequality was obtained by himself in 1923 [23].Let f(x) = P10 ann! xn be an entire function such that limsupn!1 npjanj is �nite and equal to k. If thesupremum M of jf(x)j over the reals is �nite, then the same is true of the supremum M 0 of jf 0(x)j over thereal axis, and M 0 � kM .Finally, note that trigonometric functions are eigenfunctions of a system of di�erential equations ofa simple kind. This observation led E. Carlson, a student of Jackson, to a generalization of Bernstein'sinequality in the case of a more general system of di�erential equations [42]. ThenM 0n � CnMn;where Mn = max jSn(x)j; M 0n = max jS0n(x)j;Sn(x) is a sum of the form P10 akvk(x), ak are arbitrary coe�cients, v1; : : : ; vk are eigenfunctions corre-sponding to the eigenvalues of the system of di�erential equations listed in ascending order, and C is aconstant depending neither on n nor on the coe�cients ak.31



There are several strengthenings of Markov's inequality M 0n � n2Mn under various additional assump-tions.*The most general problem of A. A. Markov type for trigonometric polynomialsSn(x) = a0 + nXm=1(am cosmx+ bm sinmx)is to minimize the maximum of jSn(x)j, given a linear dependence among the coe�cients of Sn.A similar problem, though of another type, was considered by L. Fej�er [44]. Given a linear dependenceamong the coe�cients of a non-negative trigonometric polynomial Sn(x), minimize its last coe�cientan = Z ��� Sn(x) dx:Fej�er found a solution to this problem by representing a non-negative trigonometric polynomial as the squareof the absolute value of an algebraic polynomial in the variable z = ei�. Bernstein [32] found the solutionwithout passing to the complex domain by applying the classical methods of Chebyshev, which turned outto be quite e�ective in this case.Bernstein's works [33], [36], which appeared around 1930, are devoted to orthogonal systems of polyno-mials de�ned by a weight of the form %(x) = t(x)q(x);where q(x) = 1p1�x2 and t(x) is a function bounded below and above by positive constants. These works mustbe mentioned in this survey, for they clarify the relationship between approximations in di�erent functionspaces. The starting point is the observation that the norm kPn(x)k of a polynomialPn(x) = xn + p1xn�1 + � � �+ pn (15)is minimized by the same Chebyshev polynomial Pn(x) = Tn(x)2n�1 in di�erent spaces, viz. in the spaces C andL(s)(q) for s � 1.** In addition, if the norms of f(x) in the spaces C, C(%), L(s), L(s)(%) are denoted byN (f); N (%; f); N (s)(f); N (s)(%; f);respectively, then the following equality holds for Pn(x) = Tn(x)2n�1 :N (s)(%; Pn) = ss�(12 )�(1+ss )�(1 + s2 ) N (Pn): (16)S.N. Bernstein generalizes this result as follows. The polynomialPn(x) of the form (15) whose L2(tq)-norm isminimal (i.e., a polynomial of degree n that belongs to the orthogonal system de�ned by the weight t(x)q(x))also asymptotically minimizes the norm in the spaces L(s)(tq) for s > 2 as well as in the space C(t), and theasymptotic relation N (s)(tq; Pn) � ss�(12 )�(1+ss )�(1 + s2) N (t; Pn) (17)* See, for example, S. N. Bernstein [27], pp.47{50.** Moreover, S.N. Bernstein shows that the same is true for any space where the norm is given bykfk = Z 1�1�(jf j) dxp1� x2 ;� being a non-decreasing function. 32



holds, at least if the function has some di�erentiability properties similar to that of Dini-Lipschitz.An analogous problem { to investigate properties of orthogonal polynomial systems in the complexdomain { was successfully solved by G. Szeg�o [69], [71].Bernstein has expanded the circle of problems of Chebyshev type in one more way. Chebyshev and hisimmediate successors had always taken bounded intervals on the real axis to be the domains of functions.But, after suitable changes in the setup of the problem, one can consider best approximations on unboundedintervals (the whole real axis or its semi-axis) as well.*A similar opportunity exists if one considers a weight that tends to zero faster than the function to beapproximated and the approximating polynomials as the argument tends to in�nity. For example, in theL(2)-space with weight e�x on the interval (0;1), this gives approximations by Laguerre polynomials. Onthe interval (�1;+1) with weight e�x2 , on obtains approximations by Hermite polynomials. It is legitimateto ask a similar question for the Chebyshev space as well, requiring the minimization of the expressionmaxf%(x)jf(x) � Pn(x)jgon an unbounded interval, given that %(x) decays su�ciently fast. Another option, which was also exploredby Chebyshev, is to consider approximation by rational functions on an unbounded interval [26], [27].It is not easy to give an exhaustive list of problems that have arisen during almost a century in connec-tions with the best approximation problems of Chebyshev. To complete our survey, we must mention twomore directions of research re
ected in the works of S. N. Bernstein.1. The inverse problem of best approximation. Given a non-increasing sequence of positive numbersconverging to zero, a0 � a1 � a2 � � � � � an � � � � ; limn!1an = 0;construct a function f(x) de�ned on the basic interval that satis�es the equalities [39]En(f) = an (n = 0; 1; 2; : : :):2. The theory of quasi-analytic functions. We already pointed out that a classi�cation of functions ofa real variable is possible on the basis of best approximations. In particular, one can single out the classesof so-called quasi-analytic functions de�ned by the property that every function in each class is determineduniquely by its values on an arbitrarily small interval. The simplest of the quasi-analytic classes is that ofanalytic functions. It is characterized by the inequalitylim supn!1 npEn(f) < 1:But, as was shown by Bernstein already in 1914, the much larger class of functions f(x) satisfying theinequality lim infn!1 npEn(f) < 1turns out to be also quasi-analytic. It contains even non-di�erentiable functions. In the beginning of the20-s, Carleman and A. Denjoy de�ned another class of quasi-analytic functions by the requirement thatfunctions f in the class be in�nitely di�erentiable and the seriesXn 1npMn ;where Mn = max jf (n)(x)j, diverge.As was shown later by Bernstein [24], [25], this class can be characterized in terms of best approximations,namely, by the condition X 1maxp�1 p npEp(f) =1:* This is already the case in the simplest Poncelet problem.33
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