The following are seminal papers in approximation theory.
- Achyeser, N. [Akhiezer, N. I.], Verallgemeinerung einer Korkine-Zolotareffschen Minimum-Aufgabe, Commun. Soc. Math. Kharkov Inst. Sci. Math. et Mecan., Univ. Kharkov, Ser.4, vol. XIII (1936), 3-14. Here is an English translation.
- Bernstein, S. N., Démonstration du Théorème de Weierstrass fondée sur le calcul des Probabilités, Comm. Soc. Math. Kharkov 2.Series XIII No.1 (1912), 1-2. This is Bernstein's famous paper where he presented a probabilistic proof of the Weierstrass Theorem, and introduced what we today call Bernstein polynomials. Note that his proof is somewhat "overinvolved". We nowadays present this proof in a slightly more elegant form. This paper is reprinted in Russian in Bernstein's collected works. Note that the bound volume XIII of the journal carries the year 1913 even though the first few numbers published separately each carry the year 1912.
- Bernstein, S. N., Sur les recherches récentes relatives à la meilleure approximation des fonctions continues par les polynômes, in Proc. of 5th Inter. Math. Congress Vol. 1, 1912, 256-266. Also appears in Russian translation in Bernstein's Collected Works.
- Bernstein, S. N., Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné, Mem. Cl. Sci. Acad. Roy. Belg. 4 (1912), 1-103. This paper was awarded a prize by the Belgian Academy of Science. This was as a consequence of his answer to a question posed by de la Vallée Poussin. Bernstein proved that it is not possible to approximate |x| in [-1,1] by a polynomial of degree n with an approximation of order greater than 1/n. It also contains the first form of what we call inverse theorems, Bernstein's inequality and more.
- Bernstein, S. N., O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni Comm. Soc. Math. Kharkov 2.Series, XIII No. 2-5, (1912), 49-194, and here is the somewhat changed version of the above paper, as it appears in Bernstein Collected Works, Constructive Function Theory 1905-1930, Akademia Nauk SSSR, 1952, 11-104. Note that the bound volume XIII of the journal carries the year 1913 even though the first few numbers published separately each carry the year 1912. Here is Bernstein's public lecture given during the defense of his doctoral dissertation in Kharkiv (modern spelling) on May 19, 1913.
- Bernstein, S. N., Sur la meilleure approximation de |x| par des polynomes de degré donné Acta Math. 37 (1914), 1-57. The paper where Bernstein shows that the limit 2nE_{2n}(|x|) (Bernstein's constant) exists.
- Blichfeldt, H. F., Note on the functions of the form f(x) = Φ(x) + a1 xn-1 + a2 xn-2 + ... + an which in a given interval differ the least possible from zero, Trans. Amer. Math. Soc. 2 (1901), 100-102. For those with access this article may also be viewed at JSTOR. Review from Jahrbuch Database in ZBMath Open.
- Borel, É., Leçons sur les fonctions de variables réelles et les développements en séries de polynômes, Gauthier-Villars, Paris, 1905 [2nd edition appeared in 1928]. The first textbook devoted mainly to approximation theory. Here is J. W. Young's review of this book from March 1906.
- Carleman, T., Sur un théorème de Weierstrass, Ark. Mat., Ast. Fysik 20B (1927), 1-5. Review in ZBMath Open.
- Chebyshev, P. L., Théorie des mécanismes connus sous le nom de parallélogrammes, Mém. Acad. Sci. Pétersb. 7 (1854), 539-568. Also to be found in Oeuvres de P. L. Tchebychef, Volume 1, 111-143, Chelsea, New York, 1961, from where this paper was scanned. The surprisingly many and varied linkages designed by Chebyshev can all be viewed, in action, at Mechanisms (pointing your cursor at the Russian flag at the upper right corner of that page gives you the opportunity to choose to see the page in English). Each of the many mechanisms shown can be activated by a click; there are plans to provide the detailed comments associated with the animation eventually in English.
- Chebyshev, P. L., Sur les questions de minima qui se rattachent à la représentation approximative des fonctions, Mém. Acad. Sci. Pétersb. 7 (1859), 199-291. Also to be found in Oeuvres de P. L. Tchebychef, Volume 1, 273-378, Chelsea, New York, 1961, from where this paper was scanned.
- Chebyshev, P. L., Sur les fonctions qui différent le moins possible de zéro, J. Math. Pures et Appl. 19 (1874), 319-346. (Author there listed as P. Tchebichef.) The paper is reproduced in Oeuvres de P. L. Tchebychef, Volume 2, 189-215, Chelsea, New York, 1961.
- Faber, G., Über polynomische Entwickelungen, Math. Ann.57 (1903), 389-408. This is where what we today call Faber polynomials was introduced.
- Faber, G., Über die Orthogonalfunktionen des Herrn Haar, Jahresber. Deut. Math. Verein. 19 (1910), 104-112.
- Faber, G., Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deut. Math. Verein. 23 (1914), 192-210. Contains Faber's Theorem proving that for every array of points there exists a continuous function for which the associated Lagrange interpolation operators diverge.
- Fejér, L., Sur les fonctions bornées et intégrables, Comptes Rendus Hebdomadaries, Seances de l'Academie de Sciences, Paris 131 (1900), 984-987 (in equation (2), 1/2 cos --> 1/2 + cos). This fundamental paper formed the basis of Fejér's doctoral thesis obtained in 1902 from the University of Budapest, under the supervision of H. A. Schwarz. Fejér was 20 years old when this paper appeared. The paper contains the "classic" theorem on Cesaro (C,1) summability of Fourier series, thus providing a direct constructive proof of Weierstrass' Theorem.
- Fejér, L., Über Interpolation, Nachrichten der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse, 1916, 66-91. This is where Fejér introduced what we now call the Hermite-Fejér Interpolation operator (based on the zeros of the Chebyshev polynomial), and proved the uniform convergence of the sequence of these polynomials to the function being interpolated.
- Fejér, L., Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle [-1,+1] ein möglichst kleines Maximum besitzt. (Determination of the nodes in an interval for which the sum of squares of the basis functions of Lagrange interpolation has in the interval [-1,+1] the smallest possible maximum) Annali della Scuola Norm sup. di Pisa 1 (1932), 263-276.
- Haar, A., Zur Theorie der orthogonalen Funktionensysteme, (Erste Mitteilung), Math. Ann. 69 (1910), 331-371. This is Haar's thesis, written under the supervision of David Hilbert. Here we find, for example, the Haar orthonormal system. Here is an English translation by G. Zimmermann (published in Fundamental Papers in Wavelet Theory, Princeton University Press (2006), 155-188).
- Haar, A., Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1918), 294-311. Contains the Haar Theorem characterizing finite-dimensional unicity spaces in C(X).
- Hermite, C., Sur la formule d'interpolation de Lagrange, Journal für die Reine und Angewandte Mathematik 84 (1878), 70-79. Hermite interpolation.
- Hopf, E., Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften (On the connections between certain higher divided differences of real functions of one real variable and their differentiability properties), Dissertation, Friedrich-Wilhelms-Universität Berlin, 1926. Eberhard Hopf's thesis, under E. Schmidt and I. Schur, characterizes those functions on a given interval whose n-th divided differences are nonnegative or, more generally, lie between two given constants. This is the first work on what we now call `n-convexity'.
- Jackson, D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung (On the precision of the approximation of continuous functions by polynomials of given degree and by trigonometric sums of given order). Preisschrift und Dissertation. Univ. Göttingen, June 14, 1911 (also at GDZ). This is Dunham Jackson's doctoral thesis. (Jackson's advisor was Edmund Landau.)
- Kakeya, S., On approximate polynomials, Tohoku Math. J. 6 (1914), 182-186. This paper is about uniform approximation by polynomials with integer coefficients. Kakeya continues the work of Pál by finding necessary and sufficient conditions on the functions f defined on [-1,1] which can be so approximated. He also shows that on an interval of length at least 4, the only functions which can be approximated in this way are the integral polynomials themselves.
- Kirchberger, P., Über Tchebychefsche Annäherungsmethoden, Dissertation. Univ. Göttingen, 1902. See also Math. Ann. 58 (1903), 509-540. This latter article does not contain the full results of his thesis. It discusses multivariate approximation problems. Kirchberger's "proof" of the alternation theorem, a theorem about the stability of the linear approximation operator and Chebyshev's approximation algorithm, i.e., all his one-dimensional results, are only to be found in the thesis. (Paul Kirchberger's doctoral advisor was David Hilbert.)
- Landau, E., Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion, Rend. Circ. Mat. Palermo 25 (1908), 337-345. Landau's proof of the Weierstrass Theorem. A linear direct proof where he introduces what we today call Landau polynomials.
- Lebesgue, H., Sur l'approximation des fonctions, Bull. Sciences Math.22 (1898), 278-287. Here is Lebesgue's beautiful proof of the Weierstrass Theorem. It is based on the idea of approximating the single function |x| by polynomials, and the fact that one can uniformly approximate any continuous function on a closed finite interval by continuous piecewise linear approximants. This is Lebesgue's first paper. He obtained his doctorate 4 years later. (This journal was also called the Darboux Bulletin.) Review in ZBMath Open.
- Lebesgue, H., Sur la représentation approchée des fonctions, Rend. Circ. Mat. Palermo 26 (1908), 325-328.
- Lebesgue, H., Sur les intégrales singulières, Ann. Fac. Sci. Univ. Toulouse 1 (1909), 25-117.
- Lebesgue, H., Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz, Bulletin de la Société de France 38 (1910), 184-210.
- Mairhuber, John C., On Haar's Theorem concerning Chebychev approximation problems having unique solutions, Proc. Amer. Math. Soc. 7 (1956), 609-615. For those with access this article may also be viewed at JSTOR. This contains Mairhuber's Theorem characterizing domains supporting Haar spaces of dimension at least 2. Review from MR.
- Markov, A. A., Ob odnom voproce D. I. Mendeleeva, Zapiski Imperatorskoi Akademii Nauk SP6. 62 (1890), 1-24. This is the original paper in Old Russian spelling (and we thank V. V. Arestov and Elena Berdysheva for providing this copy). This paper contains the proof of the Markov inequality for algebraic polynomials. This journal was later called Mémoires de l'Academie Impériale des Sciences de St.-Pétersbourg VIe séries. Due, it seems, to translating the name of the journal into French and then back into Russian, many sources now reference this article as being in Izv. Petersburg Acad. Nauk or some variant thereof. As such it was referenced (and also with the year 1889) in A. A. Markov's Selected Works from 1948 which contains a transcription of the above paper into modern Russian spelling. We also have an English translation On a question by D. I. Mendeleev prepared by Carl de Boor and Olga Holtz.
- Markov, V. A., O funktsiyakh, naimeneye uklonyayushchikhsya ot nulya v dannom promezhutke [On functions which deviate least from zero in a given interval], 1892. This was a preprint/treatise from the Department of Applied Mathematics, Imperial St.-Petersburg University. It was translated into German, with a short foreword by Bernstein, and appeared as: Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213-258. The paper contains the proof of the Markov inequality for higher derivatives of algebraic polynomials. The appendix of V. A. Gusev in the book of E. V. Voronovskaja titled "The Functional Method and its Applications", Vol. 28 of Translations of Mathematical Monographs of the AMS, 1970, reproduces the final (and most essential) part of Markov's proof almost identically (even the letters in formulae are the same). Vladimir Andreyevich Markov was a younger half-brother of Andrey Andreyevich Markov. This paper was published while he was a 21 year old student at the St.-Petersburg University. He died at the age of 25 (of tuberculosis).
- Méray, C., Nouveaux exemples d'interpolations illusoires, Bull. Sci. Math. 20 (1896), 266-270. Journal then called Darboux Bulletin. Review in ZBMath Open.
- Mittag-Leffler, G., Sur la représentation analytique des fonctions d'une variable réelle, Rend. Circ. Mat. Palermo 14 (1900), 217-224. Mittag-Leffler's proof of the Weierstrass Theorem. Also contains a long, long footnote where there is given an explanation by Phragmén of how the Weierstrass Theorem follows from work of Runge. Review in ZBMath Open.
- Müntz, Ch. H., Über den Approximationssatz von Weierstrass, in H. A. Schwarz's Festschrift, Berlin, 1914, pp. 303-312. This paper contains the original proof of the Müntz Completeness Theorem. It affirmatively answers a question posed by S. N. Bernstein two years previously. Review in ZBMath Open.
- Newton, Sir Isaac, page 695, page 696 of `Philosophiae naturalis principia mathematica' (the original alongside an English translation), containing Lemma V of Book III in which Newton introduces divided differences in the construction of a polynomial interpolant to arbitrary data.
- Pál, J., Zwei kleine Bemerkungen, Tohoku Math. J. 6 (1914), 42-43. The first paper to consider uniform approximation by polynomials with integer coefficients. Pál proves that if f is continuous on [-a,a], |a|<1, and f(0) is an integer then f may be uniformly approximated thereon by polynomials with integer coefficients.
- Picard, E., Sur la représentation approchée des fonctions, Comptes Rendus Hebdomadaries, Seances de l'Academie de Sciences, Paris 112 (1891), 183-186. This is the first alternative proof of the Weierstrass Theorem. It also contains the first proof of the Weierstrass Theorem for functions of several variables. Review in ZBMath Open.
- Remes, Eugéne [Remez, E. Y.], Sur une propriété extrémale des polynomes de Tchebychef, Comm. Inst. Sci. math. mec. Univ. Kharkoff et de la Soc. Math. de Kharkoff (Zapiski Nauchno-issledovatel'skogo instituta matematiki i mekhaniki i Khar'kovskogo matematicheskogo obshchestva) 13 no.1 (1936), 93-95; here is a free translation.
- Riesz, F., Sur certains systèmes d'équations fonctionelles et l'approximation des fonctions continues, Comptes Rendus Acad. Sci. Paris 150 (1910), 647-677. Also appears in Oeuvres of F. Riesz on p. 403-406. There is a mix-up in some copies of the Oeuvres and there this paper is on pages 403, 404, 398 and 399. This is the first paper where it is stated and proved that an element of C([a,b]) is in the closure of a subspace if and only if every continuous linear functional that vanishes on the subspace also vanishes on the element.
- Riesz, F., Über lineare Funktionalgleichungen, Acta Math. 41 (1918), 71-98. Contains first general proof of existence of best approximation from finite-dimensional subspace (see Hilfssatz 3, p. 77, i.e., Proposition 3 in the English translation of the relevant part of the paper).
- Riesz, M., Sur la sommation des séries de Fourier, Acta Scientiarum Mathematicarum, 1:2-2 (1922-23), 104-113.
- Riesz, M., Sur un théorème de la moyenne et ses applications, Acta Scientiarum Mathematicarum, 1:2-2 (1922-23), 114-126.
- Runge, C., Zur Theorie der eindeutigen analytischen Functionen, Acta Math.6 (1885), 229-244.
- Runge, C., Über die Darstellung willkürlicher Functionen, Acta Math. 7 (1885/86), 387-392. This paper contains a proof of the fact that any continuous function on a finite interval can be uniformly approximated by rational functions. Phragmén (see footnote in Mittag-Leffler's 1900 paper) pointed out that Runge's previous article (Acta Math. 6) contains a method of replacing the rational functions by polynomials. These papers do not explicitly contain Weierstrass' Theorem. Review in ZBMath Open.
- Runge, C., Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeit. Math. Phys. 46 (1901), 224-243.
- Sierpinski, W., Dowod elementarny twierdzenia Weierstrass'a i wzoru interpolacyjnego Borel'a, Prace Mat-fiz, t. XXII, (1911), 59-68. In this paper, Sierpinski proves the Weierstrass Theorem based on a method suggested by Borel in his 1905 book cited below, p. 79-82. This was superseded one year later by Bernstein's paper where he introduced the Bernstein polynomials. Also to be found here.
- Szász, O., Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann. 77 (1916), 482-496.
- Szász, O., Lectures by Otto Szász written by Joshua Barlaz, Introduction to the Theory of Divergent Series, Department of Mathematics, Graduate School of Arts and Sciences, University of Cincinnati, 1944.
- Tonelli, L., I polinomi d'approssimazione di Tchebychev, Annali di Matematica Pura ed Applicata - Serie III XV (1908), 47-119.
- de la Vallée Poussin, Ch.-J., Sur l'approximation des fonctions d'une variable réelle et leurs dérivées par des polynômes et des suites limitées de Fourier, Bulletin de l'Academie Royale de Belgique 3 (1908), 193-254.
- de La Vallée Poussin, Ch. J., Leçons sur l'approximation des fonctions d'une variable réelle, Gauthier-Villars et co, Paris, 1919.
- Volterra, V., Sul principio di Dirichlet, Rend. Circ. Mat. Palermo 11 (1897), 83-86. Another proof of Weierstrass' Theorem for trigonometric polynomials. It is to be found right at the end of the paper. Review in ZBMath Open.
- Weierstrass, K., Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Akademie zu Berlin 633-639 and 789-805, 1885. Weierstrass' paper with his proof of the Weierstrass Theorem on density of algebraic polynomials in the space of continuous real-valued functions on any finite closed interval. Also the analogous result for trigonometric polynomials. An expanded version of this paper with ten additional pages appeared in Weierstrass' "Mathematische Werke", Vol. 3, 1-37, Mayer and Müller, Berlin, 1903. Review in ZBMath Open.
- Weierstrass, K., Sur la possibilité d'une représentation analytique des fonctions dites arbitraires d'une variable réelle, J. Math. Pure et Appl. 2 (1886), 105-113 and 115-138. This is the translation of the Weierstrass 1885 paper and, as the original, it appeared in two parts and in subsequent issues, but under the same title. This journal was, at the time, called Jordan Journal.
- Young, J. W., General theory of approximation by functions involving a given number of arbitrary parameters, Trans. Amer. Math. Soc. 8 (1907), 331-344. This article may also be viewed at AMS and at JSTOR.
- Zolotarev, E. I., Prilozhenie ellipticheskikh funkcij k voprosam o funkciyakh, najmenee i naibolee otklonyayushchikhsya ot nulya, Oeuvres de E. I. Zolotarev, Volume 2, Izdat. Akad. Nauk SSSR, Leningrad, 1932, pp. 1-59 (in Russian). The English title is "Applications of elliptic functions to problems of functions deviating least and most from zero". The original appeared in Zapiski St-Petersburg Akad. Nauk 30 (1877).
You are invited and encouraged to send us your suggestions for additional papers to post. However please note that we are limited by copyright laws.